Bilayer graphene in periodic and quasiperiodic magnetic superlattices
- URL: http://arxiv.org/abs/2404.19106v2
- Date: Mon, 15 Jul 2024 18:27:13 GMT
- Title: Bilayer graphene in periodic and quasiperiodic magnetic superlattices
- Authors: David J. Fernández C., O. Pavón-Torres,
- Abstract summary: We study the behaviour of low-lying excitations for bilayer graphene placed in periodic external magnetic fields by using irreducible second order supersymmetry transformations.
The direct implementation of more general second-order supersymmetry transformations allows to create nonsingular Schr"odinger potentials with periodicity defects and bound states embedded in the forbidden bands.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Starting from the effective Hamiltonian arising from the tight binding model, we study the behaviour of low-lying excitations for bilayer graphene placed in periodic external magnetic fields by using irreducible second order supersymmetry transformations. The coupled system of equations describing these excitations is reduced to a pair of periodic Schr\"odinger Hamiltonians intertwined by a second order differential operator. The direct implementation of more general second-order supersymmetry transformations allows to create nonsingular Schr\"odinger potentials with periodicity defects and bound states embedded in the forbidden bands, which turn out to be associated to quasiperiodic magnetic superlattices. Applications in quantum metamaterials stem from the ability to engineer and control such bound states which could lead to a fast development of the subject in the near future.
Related papers
- The role of higher-order terms in trapped-ion quantum computing with magnetic gradient induced coupling [0.40151799356083073]
Trapped-ion hardware based on the Magnetic Gradient Induced Coupling scheme is emerging as a promising platform for quantum computing.
We present a discussion of the contribution of higher-order terms to the MAGIC setup, which can occur due to anharmonicities in the external potential of the ion crystal.
We find that most of these are negligible in realistic situations, with only two contributions that need careful attention.
arXiv Detail & Related papers (2024-09-16T17:38:07Z) - Ferrimagnetism of ultracold fermions in a multi-band Hubbard system [34.95884242542007]
We report on signatures of a ferrimagnetic state realized in a Lieb lattice at half-filling.
We demonstrate its robustness when increasing repulsive interactions from the non-interacting to the Heisenberg regime.
Our work paves the way towards exploring exotic phases in related multi-orbital models such as quantum spin liquids in kagome lattices and heavy fermion behavior in Kondo models.
arXiv Detail & Related papers (2024-04-26T17:33:26Z) - Momentum-selective pair creation of spin excitations in dipolar bilayers [0.0]
We study the temporal growth and spatial propagation of quantum correlations in a two-dimensional bilayer realising a spin-1/2 quantum XXZ model with couplings mediated by long-range and anisotropic dipolar interactions.
The predicted behavior remains observable at very low filling fractions, making it accessible in state-of-the-art experiments with Rydberg atoms, magnetic atoms, and polar molecule arrays.
arXiv Detail & Related papers (2023-02-17T18:50:13Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Variational Quantum Simulation of Valence-Bond Solids [0.0]
We introduce a hybrid quantum-classical variational algorithm to simulate ground-state phase diagrams of frustrated quantum spin models.
We benchmark the method against the J1-J2 Heisenberg model on the square lattice and uncover its phase diagram.
Our results show that the convergence of the algorithm is guided by the onset of long-range order, opening a promising route to synthetically realize frustrated quantum magnets.
arXiv Detail & Related papers (2022-01-07T17:05:14Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Higher-order topological quantum paramagnets [0.0]
Quantum paramagnets are strongly-correlated phases of matter where competing interactions frustrate magnetic order down to zero temperature.
In certain cases, quantum fluctuations induce instead topological order, supporting, in particular, fractionalized quasi-particle excitations.
We show how magnetic frustration can also give rise to higher-order topological properties.
arXiv Detail & Related papers (2021-07-21T14:47:32Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - New approach to describe two coupled spins in a variable magnetic field [55.41644538483948]
We describe the evolution of two spins coupled by hyperfine interaction in an external time-dependent magnetic field.
We modify the time-dependent Schr"odinger equation through a change of representation.
The solution is highly simplified when an adiabatically varying magnetic field perturbs the system.
arXiv Detail & Related papers (2020-11-23T17:29:31Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.