論文の概要: Integrating Present and Past in Unsupervised Continual Learning
- arxiv url: http://arxiv.org/abs/2404.19132v2
- Date: Mon, 12 Aug 2024 10:00:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 23:07:09.546744
- Title: Integrating Present and Past in Unsupervised Continual Learning
- Title(参考訳): 教師なし連続学習における現在と過去の統合
- Authors: Yipeng Zhang, Laurent Charlin, Richard Zemel, Mengye Ren,
- Abstract要約: 教師なし連続学習(UCL)のための統一的枠組みを定式化する。
既存のUCLアプローチの多くは、クロスタスク統合を見落とし、共有埋め込み空間における可塑性と安定性のバランスを図っている。
- 参考スコア(独自算出の注目度): 28.208585464074176
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We formulate a unifying framework for unsupervised continual learning (UCL), which disentangles learning objectives that are specific to the present and the past data, encompassing stability, plasticity, and cross-task consolidation. The framework reveals that many existing UCL approaches overlook cross-task consolidation and try to balance plasticity and stability in a shared embedding space. This results in worse performance due to a lack of within-task data diversity and reduced effectiveness in learning the current task. Our method, Osiris, which explicitly optimizes all three objectives on separate embedding spaces, achieves state-of-the-art performance on all benchmarks, including two novel benchmarks proposed in this paper featuring semantically structured task sequences. Compared to standard benchmarks, these two structured benchmarks more closely resemble visual signals received by humans and animals when navigating real-world environments. Finally, we show some preliminary evidence that continual models can benefit from such realistic learning scenarios.
- Abstract(参考訳): 我々は、現在および過去のデータに特有の学習目標を、安定性、可塑性、およびクロスタスク統合を包含する、教師なし連続学習(UCL)の統一フレームワークを定式化する。
このフレームワークは、多くの既存のUCLアプローチがクロスタスク統合を見落とし、共有埋め込み空間における可塑性と安定性のバランスをとろうとしていることを明らかにしている。
これにより、タスク内データの多様性の欠如と、現在のタスクの学習効率の低下により、パフォーマンスが低下する。
提案手法であるOsirisは,3つの目的を個別な埋め込み空間上で明示的に最適化し,意味的に構造化されたタスクシーケンスを特徴とする2つの新しいベンチマークを含む,すべてのベンチマークの最先端性能を実現する。
標準的なベンチマークと比較すると、この2つの構造化されたベンチマークは現実世界の環境をナビゲートする際に人間や動物が受ける視覚信号によく似ている。
最後に,このような現実的な学習シナリオから連続モデルが有用であることを示す予備的証拠を示す。
関連論文リスト
- Temporal-Difference Variational Continual Learning [89.32940051152782]
現実世界のアプリケーションにおける機械学習モデルの重要な機能は、新しいタスクを継続的に学習する能力である。
継続的な学習設定では、モデルは以前の知識を保持することで新しいタスクの学習のバランスをとるのに苦労することが多い。
複数の先行推定の正則化効果を統合する新たな学習目標を提案する。
論文 参考訳(メタデータ) (2024-10-10T10:58:41Z) - Advancing Semantic Textual Similarity Modeling: A Regression Framework with Translated ReLU and Smooth K2 Loss [3.435381469869212]
本稿では,Sentence-BERT STSタスクのための革新的な回帰フレームワークを提案する。
これは2つの単純で効果的な損失関数、Translated ReLUとSmooth K2 Lossを提案する。
実験結果から,本手法は7つのSTSベンチマークにおいて有意な性能を達成できることが示された。
論文 参考訳(メタデータ) (2024-06-08T02:52:43Z) - Improving Data-aware and Parameter-aware Robustness for Continual Learning [3.480626767752489]
本報告では, オフラヤの非効率な取扱いから, この不整合が生じることを解析する。
本稿では,ロバスト連続学習(RCL)手法を提案する。
提案手法は, 堅牢性を効果的に維持し, 新たなSOTA(State-of-the-art)結果を得る。
論文 参考訳(メタデータ) (2024-05-27T11:21:26Z) - Dynamic Sub-graph Distillation for Robust Semi-supervised Continual
Learning [52.046037471678005]
半教師付き連続学習(SSCL)に焦点をあて、そのモデルが未知のカテゴリを持つ部分ラベル付きデータから徐々に学習する。
半教師付き連続学習のための動的サブグラフ蒸留法(DSGD)を提案する。
論文 参考訳(メタデータ) (2023-12-27T04:40:12Z) - BAL: Balancing Diversity and Novelty for Active Learning [53.289700543331925]
多様な不確実なデータのバランスをとるために適応的なサブプールを構築する新しいフレームワークであるBalancing Active Learning (BAL)を導入する。
我々のアプローチは、広く認識されているベンチマークにおいて、確立されたすべてのアクティブな学習方法より1.20%優れています。
論文 参考訳(メタデータ) (2023-12-26T08:14:46Z) - Synergistic Anchored Contrastive Pre-training for Few-Shot Relation
Extraction [4.7220779071424985]
Few-shot Relation extract (FSRE) は、ラベル付きコーパスのスパースセットから事実を抽出することを目的としている。
近年の研究では、事前学習言語モデルを用いたFSREの有望な結果が示されている。
本稿では,新しい相乗的アンカー付きコントラスト事前学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-19T10:16:24Z) - New metrics for analyzing continual learners [27.868967961503962]
継続学習(CL)は、標準的な学習アルゴリズムに課題をもたらす。
この安定性・塑性ジレンマはCLの中心であり、安定性と塑性を個別に適切に測定するために複数の測定基準が提案されている。
課題の難しさを考慮に入れた新しい指標を提案する。
論文 参考訳(メタデータ) (2023-09-01T13:53:33Z) - Imposing Consistency for Optical Flow Estimation [73.53204596544472]
プロキシタスクによる一貫性の導入は、データ駆動学習を強化することが示されている。
本稿では,光フロー推定のための新しい,効果的な整合性戦略を提案する。
論文 参考訳(メタデータ) (2022-04-14T22:58:30Z) - Self-Regulated Learning for Egocentric Video Activity Anticipation [147.9783215348252]
自己制御学習(SRL)は、中間表現を連続的に制御し、現在のタイムスタンプのフレームにおける新しい情報を強調する表現を作り出すことを目的としている。
SRLは2つのエゴセントリックなビデオデータセットと2つの第三者のビデオデータセットにおいて、既存の最先端技術よりも大幅に優れています。
論文 参考訳(メタデータ) (2021-11-23T03:29:18Z) - Multiband VAE: Latent Space Partitioning for Knowledge Consolidation in
Continual Learning [14.226973149346883]
従来を忘れずに新しいデータサンプルに関する知識を取得することは、継続的な学習の重要な問題である。
本稿では,変分オートエンコーダの潜伏空間の分割に依存する生成モデルにおける教師なし連続的知識統合手法を提案する。
標準連続学習評価ベンチマークに基づいて,本手法を新たな知識統合シナリオで評価し,提案手法が最先端の2倍に向上することを示す。
論文 参考訳(メタデータ) (2021-06-23T06:58:40Z) - 3D Human Action Representation Learning via Cross-View Consistency
Pursuit [52.19199260960558]
教師なし3次元骨格に基づく行動表現(CrosSCLR)のためのクロスビューコントラスト学習フレームワークを提案する。
CrosSCLRは、シングルビューのコントラスト学習(SkeletonCLR)とクロスビューの一貫した知識マイニング(CVC-KM)モジュールの両方で構成されています。
論文 参考訳(メタデータ) (2021-04-29T16:29:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。