Enhancing Brazilian Sign Language Recognition through Skeleton Image Representation
- URL: http://arxiv.org/abs/2404.19148v1
- Date: Mon, 29 Apr 2024 23:21:17 GMT
- Title: Enhancing Brazilian Sign Language Recognition through Skeleton Image Representation
- Authors: Carlos Eduardo G. R. Alves, Francisco de Assis Boldt, Thiago M. Paixão,
- Abstract summary: This work proposes an Isolated Sign Language Recognition (ISLR) approach where body, hands, and facial landmarks are extracted throughout time and encoded as 2-D images.
We show that our method surpassed the state-of-the-art in terms of performance metrics on two widely recognized datasets in Brazilian Sign Language (LIBRAS)
In addition to being more accurate, our method is more time-efficient and easier to train due to its reliance on a simpler network architecture and solely RGB data as input.
- Score: 2.6311088262657907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective communication is paramount for the inclusion of deaf individuals in society. However, persistent communication barriers due to limited Sign Language (SL) knowledge hinder their full participation. In this context, Sign Language Recognition (SLR) systems have been developed to improve communication between signing and non-signing individuals. In particular, there is the problem of recognizing isolated signs (Isolated Sign Language Recognition, ISLR) of great relevance in the development of vision-based SL search engines, learning tools, and translation systems. This work proposes an ISLR approach where body, hands, and facial landmarks are extracted throughout time and encoded as 2-D images. These images are processed by a convolutional neural network, which maps the visual-temporal information into a sign label. Experimental results demonstrate that our method surpassed the state-of-the-art in terms of performance metrics on two widely recognized datasets in Brazilian Sign Language (LIBRAS), the primary focus of this study. In addition to being more accurate, our method is more time-efficient and easier to train due to its reliance on a simpler network architecture and solely RGB data as input.
Related papers
- Deep Neural Network-Based Sign Language Recognition: A Comprehensive Approach Using Transfer Learning with Explainability [0.0]
We suggest a novel solution that uses a deep neural network to fully automate sign language recognition.
This methodology integrates sophisticated preprocessing methodologies to optimise the overall performance.
Our model's ability to provide informational clarity was assessed using the SHAP (SHapley Additive exPlanations) method.
arXiv Detail & Related papers (2024-09-11T17:17:44Z) - Scaling up Multimodal Pre-training for Sign Language Understanding [96.17753464544604]
Sign language serves as the primary meaning of communication for the deaf-mute community.
To facilitate communication between the deaf-mute and hearing people, a series of sign language understanding (SLU) tasks have been studied.
These tasks investigate sign language topics from diverse perspectives and raise challenges in learning effective representation of sign language videos.
arXiv Detail & Related papers (2024-08-16T06:04:25Z) - EvSign: Sign Language Recognition and Translation with Streaming Events [59.51655336911345]
Event camera could naturally perceive dynamic hand movements, providing rich manual clues for sign language tasks.
We propose efficient transformer-based framework for event-based SLR and SLT tasks.
Our method performs favorably against existing state-of-the-art approaches with only 0.34% computational cost.
arXiv Detail & Related papers (2024-07-17T14:16:35Z) - Sign Language Recognition Based On Facial Expression and Hand Skeleton [2.5879170041667523]
We propose a sign language recognition network that integrates skeleton features of hands and facial expression.
By incorporating facial expression information, the accuracy and robustness of sign language recognition are improved.
arXiv Detail & Related papers (2024-07-02T13:02:51Z) - Self-Supervised Representation Learning with Spatial-Temporal Consistency for Sign Language Recognition [96.62264528407863]
We propose a self-supervised contrastive learning framework to excavate rich context via spatial-temporal consistency.
Inspired by the complementary property of motion and joint modalities, we first introduce first-order motion information into sign language modeling.
Our method is evaluated with extensive experiments on four public benchmarks, and achieves new state-of-the-art performance with a notable margin.
arXiv Detail & Related papers (2024-06-15T04:50:19Z) - Improving Continuous Sign Language Recognition with Cross-Lingual Signs [29.077175863743484]
We study the feasibility of utilizing multilingual sign language corpora to facilitate continuous sign language recognition.
We first build two sign language dictionaries containing isolated signs that appear in two datasets.
Then we identify the sign-to-sign mappings between two sign languages via a well-optimized isolated sign language recognition model.
arXiv Detail & Related papers (2023-08-21T15:58:47Z) - Sign Language Recognition via Skeleton-Aware Multi-Model Ensemble [71.97020373520922]
Sign language is commonly used by deaf or mute people to communicate.
We propose a novel Multi-modal Framework with a Global Ensemble Model (GEM) for isolated Sign Language Recognition ( SLR)
Our proposed SAM- SLR-v2 framework is exceedingly effective and achieves state-of-the-art performance with significant margins.
arXiv Detail & Related papers (2021-10-12T16:57:18Z) - Skeleton Based Sign Language Recognition Using Whole-body Keypoints [71.97020373520922]
Sign language is used by deaf or speech impaired people to communicate.
Skeleton-based recognition is becoming popular that it can be further ensembled with RGB-D based method to achieve state-of-the-art performance.
Inspired by the recent development of whole-body pose estimation citejin 2020whole, we propose recognizing sign language based on the whole-body key points and features.
arXiv Detail & Related papers (2021-03-16T03:38:17Z) - Pose-based Sign Language Recognition using GCN and BERT [0.0]
Word-level sign language recognition (WSLR) is the first important step towards understanding and interpreting sign language.
recognizing signs from videos is a challenging task as the meaning of a word depends on a combination of subtle body motions, hand configurations, and other movements.
Recent pose-based architectures for W SLR either model both the spatial and temporal dependencies among the poses in different frames simultaneously or only model the temporal information without fully utilizing the spatial information.
We tackle the problem of W SLR using a novel pose-based approach, which captures spatial and temporal information separately and performs late fusion.
arXiv Detail & Related papers (2020-12-01T19:10:50Z) - Transferring Cross-domain Knowledge for Video Sign Language Recognition [103.9216648495958]
Word-level sign language recognition (WSLR) is a fundamental task in sign language interpretation.
We propose a novel method that learns domain-invariant visual concepts and fertilizes WSLR models by transferring knowledge of subtitled news sign to them.
arXiv Detail & Related papers (2020-03-08T03:05:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.