Sign Language Recognition Based On Facial Expression and Hand Skeleton
- URL: http://arxiv.org/abs/2407.02241v1
- Date: Tue, 2 Jul 2024 13:02:51 GMT
- Title: Sign Language Recognition Based On Facial Expression and Hand Skeleton
- Authors: Zhiyu Long, Xingyou Liu, Jiaqi Qiao, Zhi Li,
- Abstract summary: We propose a sign language recognition network that integrates skeleton features of hands and facial expression.
By incorporating facial expression information, the accuracy and robustness of sign language recognition are improved.
- Score: 2.5879170041667523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sign language is a visual language used by the deaf and dumb community to communicate. However, for most recognition methods based on monocular cameras, the recognition accuracy is low and the robustness is poor. Even if the effect is good on some data, it may perform poorly in other data with different interference due to the inability to extract effective features. To solve these problems, we propose a sign language recognition network that integrates skeleton features of hands and facial expression. Among this, we propose a hand skeleton feature extraction based on coordinate transformation to describe the shape of the hand more accurately. Moreover, by incorporating facial expression information, the accuracy and robustness of sign language recognition are finally improved, which was verified on A Dataset for Argentinian Sign Language and SEU's Chinese Sign Language Recognition Database (SEUCSLRD).
Related papers
- Deep Neural Network-Based Sign Language Recognition: A Comprehensive Approach Using Transfer Learning with Explainability [0.0]
We suggest a novel solution that uses a deep neural network to fully automate sign language recognition.
This methodology integrates sophisticated preprocessing methodologies to optimise the overall performance.
Our model's ability to provide informational clarity was assessed using the SHAP (SHapley Additive exPlanations) method.
arXiv Detail & Related papers (2024-09-11T17:17:44Z) - Scaling up Multimodal Pre-training for Sign Language Understanding [96.17753464544604]
Sign language serves as the primary meaning of communication for the deaf-mute community.
To facilitate communication between the deaf-mute and hearing people, a series of sign language understanding (SLU) tasks have been studied.
These tasks investigate sign language topics from diverse perspectives and raise challenges in learning effective representation of sign language videos.
arXiv Detail & Related papers (2024-08-16T06:04:25Z) - EvSign: Sign Language Recognition and Translation with Streaming Events [59.51655336911345]
Event camera could naturally perceive dynamic hand movements, providing rich manual clues for sign language tasks.
We propose efficient transformer-based framework for event-based SLR and SLT tasks.
Our method performs favorably against existing state-of-the-art approaches with only 0.34% computational cost.
arXiv Detail & Related papers (2024-07-17T14:16:35Z) - Self-Supervised Representation Learning with Spatial-Temporal Consistency for Sign Language Recognition [96.62264528407863]
We propose a self-supervised contrastive learning framework to excavate rich context via spatial-temporal consistency.
Inspired by the complementary property of motion and joint modalities, we first introduce first-order motion information into sign language modeling.
Our method is evaluated with extensive experiments on four public benchmarks, and achieves new state-of-the-art performance with a notable margin.
arXiv Detail & Related papers (2024-06-15T04:50:19Z) - Enhancing Brazilian Sign Language Recognition through Skeleton Image Representation [2.6311088262657907]
This work proposes an Isolated Sign Language Recognition (ISLR) approach where body, hands, and facial landmarks are extracted throughout time and encoded as 2-D images.
We show that our method surpassed the state-of-the-art in terms of performance metrics on two widely recognized datasets in Brazilian Sign Language (LIBRAS)
In addition to being more accurate, our method is more time-efficient and easier to train due to its reliance on a simpler network architecture and solely RGB data as input.
arXiv Detail & Related papers (2024-04-29T23:21:17Z) - On the Importance of Signer Overlap for Sign Language Detection [65.26091369630547]
We argue that the current benchmark data sets for sign language detection estimate overly positive results that do not generalize well.
We quantify this with a detailed analysis of the effect of signer overlap on current sign detection benchmark data sets.
We propose new data set partitions that are free of overlap and allow for more realistic performance assessment.
arXiv Detail & Related papers (2023-03-19T22:15:05Z) - Fine-tuning of sign language recognition models: a technical report [0.0]
We focus on investigating two questions: how fine-tuning on datasets from other sign languages helps improve sign recognition quality, and whether sign recognition is possible in real-time without using GPU.
We provide code for reproducing model training experiments, converting models to ONNX format, and inference for real-time gesture recognition.
arXiv Detail & Related papers (2023-02-15T14:36:18Z) - From Two to One: A New Scene Text Recognizer with Visual Language
Modeling Network [70.47504933083218]
We propose a Visual Language Modeling Network (VisionLAN), which views the visual and linguistic information as a union.
VisionLAN significantly improves the speed by 39% and adaptively considers the linguistic information to enhance the visual features for accurate recognition.
arXiv Detail & Related papers (2021-08-22T07:56:24Z) - Skeleton Based Sign Language Recognition Using Whole-body Keypoints [71.97020373520922]
Sign language is used by deaf or speech impaired people to communicate.
Skeleton-based recognition is becoming popular that it can be further ensembled with RGB-D based method to achieve state-of-the-art performance.
Inspired by the recent development of whole-body pose estimation citejin 2020whole, we propose recognizing sign language based on the whole-body key points and features.
arXiv Detail & Related papers (2021-03-16T03:38:17Z) - FineHand: Learning Hand Shapes for American Sign Language Recognition [16.862375555609667]
We present an approach for effective learning of hand shape embeddings, which are discriminative for ASL gestures.
For hand shape recognition our method uses a mix of manually labelled hand shapes and high confidence predictions to train deep convolutional neural network (CNN)
We will demonstrate that higher quality hand shape models can significantly improve the accuracy of final video gesture classification.
arXiv Detail & Related papers (2020-03-04T23:32:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.