論文の概要: RTF: Region-based Table Filling Method for Relational Triple Extraction
- arxiv url: http://arxiv.org/abs/2404.19154v2
- Date: Thu, 13 Jun 2024 16:26:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 23:06:20.324990
- Title: RTF: Region-based Table Filling Method for Relational Triple Extraction
- Title(参考訳): RTF:リレーショナルトリプル抽出のための領域型テーブル充填法
- Authors: Ning An, Lei Hei, Yong Jiang, Weiping Meng, Jingjing Hu, Boran Huang, Feiliang Ren,
- Abstract要約: 本稿では,知識グラフからトリプルを抽出する領域ベースのテーブルフィリング手法を提案する。
そこで我々は,各トリプルを関係特化テーブル上の領域とみなし,各領域の2つのエンドポイントを決定することで3つを識別する,新しい領域ベースのタグ付け手法と双方向デコーディング戦略を考案した。
提案手法は,2つの広く使用されているベンチマークデータセットの3変種に対して,より優れた一般化を実現することを示す実験結果を得た。
- 参考スコア(独自算出の注目度): 17.267920424291372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Relational triple extraction is crucial work for the automatic construction of knowledge graphs. Existing methods only construct shallow representations from a token or token pair-level. However, previous works ignore local spatial dependencies of relational triples, resulting in a weakness of entity pair boundary detection. To tackle this problem, we propose a novel Region-based Table Filling method (RTF). We devise a novel region-based tagging scheme and bi-directional decoding strategy, which regard each relational triple as a region on the relation-specific table, and identifies triples by determining two endpoints of each region. We also introduce convolution to construct region-level table representations from a spatial perspective which makes triples easier to be captured. In addition, we share partial tagging scores among different relations to improve learning efficiency of relation classifier. Experimental results show that our method achieves state-of-the-art with better generalization capability on three variants of two widely used benchmark datasets.
- Abstract(参考訳): リレーショナルトリプル抽出は知識グラフの自動構築に不可欠である。
既存のメソッドはトークンまたはトークンペアレベルからのみ浅い表現を構築する。
しかし、従来の研究は関係三重項の局所的な空間的依存関係を無視し、実体対境界検出の弱点をもたらす。
そこで本研究では,領域ベースのテーブルフィリング手法(RTF)を提案する。
そこで我々は,各関係トリプルを関係特化テーブル上の領域とみなし,各領域の2つのエンドポイントを決定することによって三重項を識別する,新しい領域ベースのタグ付け手法と双方向デコーディング戦略を考案した。
また,空間的視点から領域レベルのテーブル表現を構築するために畳み込みを導入し,トリプルの取得を容易にする。
さらに,関係分類器の学習効率を向上させるために,関係の異なる部分的タグ付けスコアを共有する。
実験結果から,提案手法は2つの広く使用されているベンチマークデータセットの3つの変種に対して,より優れた一般化能力を有する最先端の手法を実現することが示された。
関連論文リスト
- A Bi-consolidating Model for Joint Relational Triple Extraction [3.972061685570092]
リレーショナルトリプルを抽出する現在の手法は、エンティティ認識に依存することなく、生文の可能なエンティティペアに基づいて直接予測を行う。
このタスクは、複数の関係三重項が文中に1つまたは2つの実体を共有するという深刻な意味的重なり合う問題に悩まされる。
関係三重関係に関連する局所的・大域的意味的特徴を同時に強化することにより、この問題に対処するバイコンソリデーションモデルを提案する。
論文 参考訳(メタデータ) (2024-04-05T04:04:23Z) - Prompt Based Tri-Channel Graph Convolution Neural Network for Aspect
Sentiment Triplet Extraction [63.0205418944714]
Aspect Sentiment Triplet extract (ASTE)は、ある文の三つ子を抽出する新しいタスクである。
近年の研究では、単語関係を二次元テーブルにエンコードするテーブル充填パラダイムを用いてこの問題に対処する傾向にある。
本稿では, 関係表をグラフに変換し, より包括的な関係情報を探索する, Prompt-based Tri-Channel Graph Convolution Neural Network (PT-GCN) と呼ばれるASTEタスクの新しいモデルを提案する。
論文 参考訳(メタデータ) (2023-12-18T12:46:09Z) - Hierarchical Matching and Reasoning for Multi-Query Image Retrieval [113.44470784756308]
マルチクエリ画像検索のための階層マッチング・推論ネットワーク(HMRN)を提案する。
MQIRを3つの階層的なセマンティック表現に分解し、きめ細かい局所的な詳細、文脈的グローバルスコープ、高レベルの固有の相関をキャプチャする責任を負う。
我々のHMRNは最先端の手法を大幅に上回っている。
論文 参考訳(メタデータ) (2023-06-26T07:03:56Z) - Learnable Pillar-based Re-ranking for Image-Text Retrieval [119.9979224297237]
画像テキスト検索は、モダリティギャップを埋め、意味的類似性に基づいてモダリティコンテンツを検索することを目的としている。
一般的なポストプロセッシング手法であるリグレードは, 単一モダリティ検索タスクにおいて, 隣り合う関係を捕捉する優位性を明らかにしている。
本稿では,画像テキスト検索のための新しい学習可能な柱型リグレードパラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-25T04:33:27Z) - Reference Twice: A Simple and Unified Baseline for Few-Shot Instance Segmentation [103.90033029330527]
FSIS(Few-Shot Instance)は、サポート例が限定された新しいクラスの検出とセグメンテーションを必要とする。
我々は、FSISのサポートとクエリ機能の関係を利用するための統合フレームワーク、Reference Twice(RefT)を導入する。
論文 参考訳(メタデータ) (2023-01-03T15:33:48Z) - Query-based Instance Discrimination Network for Relational Triple
Extraction [39.35417927570248]
統合エンティティと関係抽出は、情報抽出の分野における中核的なタスクである。
最近のアプローチでは、通常は立体的な視点から関係三重項の抽出を考える。
本稿では,リレーショナルトリプルに対するインスタンスレベルの表現を構築するための,新しいクエリベースのアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-03T13:34:56Z) - Towards Realistic Low-resource Relation Extraction: A Benchmark with
Empirical Baseline Study [51.33182775762785]
本稿では,低リソース環境下での関係抽出システムを構築するための実証的研究について述べる。
低リソース環境での性能を評価するための3つのスキームについて検討する。 (i) ラベル付きラベル付きデータを用いた異なるタイプのプロンプトベース手法、 (ii) 長期分布問題に対処する多様なバランシング手法、 (iii) ラベル付きインドメインデータを生成するためのデータ拡張技術と自己学習。
論文 参考訳(メタデータ) (2022-10-19T15:46:37Z) - Repurposing Knowledge Graph Embeddings for Triple Representation via
Weak Supervision [77.34726150561087]
現在の方法では、事前訓練されたモデルからの実体と述語埋め込みを使わずに、スクラッチから三重埋め込みを学習する。
本研究では,知識グラフからトリプルを自動抽出し,事前学習した埋め込みモデルからそれらのペアの類似性を推定する手法を開発した。
これらのペアの類似度スコアは、細い三重表現のためにシームズ様のニューラルネットワークに供給される。
論文 参考訳(メタデータ) (2022-08-22T14:07:08Z) - OneRel:Joint Entity and Relation Extraction with One Module in One Step [42.576188878294886]
統合エンティティと関係抽出は自然言語処理と知識グラフ構築において不可欠な課題である。
そこで我々は, 結合抽出を細粒度三重分類問題として用いた, OneRel という新しい結合実体と関係抽出モデルを提案する。
論文 参考訳(メタデータ) (2022-03-10T15:09:59Z) - A Novel Global Feature-Oriented Relational Triple Extraction Model based
on Table Filling [1.6295073821494463]
本稿では,2種類のグローバルアソシエーションをフル活用したグローバルな特徴指向トリプル抽出モデルを提案する。
実験により,本モデルの有効性が示され,これらすべてのデータセットに対して最先端の結果が得られた。
論文 参考訳(メタデータ) (2021-09-14T14:13:42Z) - TDRE: A Tensor Decomposition Based Approach for Relation Extraction [6.726803950083593]
エンティティペアを非構造化テキストから関係型とともに抽出することは、情報抽出の基本的なサブタスクである。
本稿では,まず,各関係型に富んだ単語対の3次テンソルとして,最終三重項抽出結果をモデル化する。
提案手法は,既存の強いベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2020-10-15T05:29:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。