論文の概要: Query-based Instance Discrimination Network for Relational Triple
Extraction
- arxiv url: http://arxiv.org/abs/2211.01797v1
- Date: Thu, 3 Nov 2022 13:34:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-04 13:17:55.129900
- Title: Query-based Instance Discrimination Network for Relational Triple
Extraction
- Title(参考訳): リレーショナルトリプル抽出のためのクエリベースインスタンス識別ネットワーク
- Authors: Zeqi Tan, Yongliang Shen, Xuming Hu, Wenqi Zhang, Xiaoxia Cheng,
Weiming Lu and Yueting Zhuang
- Abstract要約: 統合エンティティと関係抽出は、情報抽出の分野における中核的なタスクである。
最近のアプローチでは、通常は立体的な視点から関係三重項の抽出を考える。
本稿では,リレーショナルトリプルに対するインスタンスレベルの表現を構築するための,新しいクエリベースのアプローチを提案する。
- 参考スコア(独自算出の注目度): 39.35417927570248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Joint entity and relation extraction has been a core task in the field of
information extraction. Recent approaches usually consider the extraction of
relational triples from a stereoscopic perspective, either learning a
relation-specific tagger or separate classifiers for each relation type.
However, they still suffer from error propagation, relation redundancy and lack
of high-level connections between triples. To address these issues, we propose
a novel query-based approach to construct instance-level representations for
relational triples. By metric-based comparison between query embeddings and
token embeddings, we can extract all types of triples in one step, thus
eliminating the error propagation problem. In addition, we learn the
instance-level representation of relational triples via contrastive learning.
In this way, relational triples can not only enclose rich class-level semantics
but also access to high-order global connections. Experimental results show
that our proposed method achieves the state of the art on five widely used
benchmarks.
- Abstract(参考訳): 統合エンティティと関係抽出は、情報抽出の分野における中核的なタスクである。
最近のアプローチでは、通常は立体的な視点からリレーショナルトリプルの抽出を考慮し、関係固有のタグを学習するか、関係型ごとに別個の分類器を学習する。
しかし、それらは依然としてエラーの伝播、関係の冗長性、トリプル間の高レベル接続の欠如に悩まされている。
これらの問題に対処するために,リレーショナルトリプルのインスタンスレベル表現を構築するための新しいクエリベースアプローチを提案する。
クエリの埋め込みとトークンの埋め込みを比較することで、1ステップで全てのタイプのトリプルを抽出し、エラーの伝搬問題を排除できる。
さらに,リレーショナルトリプルのインスタンスレベル表現をコントラスト学習を通じて学習する。
このように、リレーショナルトリプルはリッチなクラスレベルのセマンティクスを包含するだけでなく、高次グローバル接続へのアクセスも可能である。
実験結果から,提案手法は5つのベンチマークにおいて最先端の手法であることがわかった。
関連論文リスト
- RTF: Region-based Table Filling Method for Relational Triple Extraction [17.267920424291372]
本稿では,知識グラフからトリプルを抽出する領域ベースのテーブルフィリング手法を提案する。
そこで我々は,各トリプルを関係特化テーブル上の領域とみなし,各領域の2つのエンドポイントを決定することで3つを識別する,新しい領域ベースのタグ付け手法と双方向デコーディング戦略を考案した。
提案手法は,2つの広く使用されているベンチマークデータセットの3変種に対して,より優れた一般化を実現することを示す実験結果を得た。
論文 参考訳(メタデータ) (2024-04-29T23:36:38Z) - Mutually Guided Few-shot Learning for Relational Triple Extraction [10.539566491939844]
三重抽出(MG-FTE)のための相互指導型Few-shot学習フレームワーク
本手法は,関係を分類するエンティティ誘導型リレーショナルデコーダと,エンティティを抽出するプロトデコーダとから構成される。
FewRel 1.0(単一ドメイン)では12.6F1スコア、FewRel 2.0(クロスドメイン)では20.5F1スコアで、多くの最先端手法よりも優れています。
論文 参考訳(メタデータ) (2023-06-23T06:15:54Z) - Learnable Pillar-based Re-ranking for Image-Text Retrieval [119.9979224297237]
画像テキスト検索は、モダリティギャップを埋め、意味的類似性に基づいてモダリティコンテンツを検索することを目的としている。
一般的なポストプロセッシング手法であるリグレードは, 単一モダリティ検索タスクにおいて, 隣り合う関係を捕捉する優位性を明らかにしている。
本稿では,画像テキスト検索のための新しい学習可能な柱型リグレードパラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-25T04:33:27Z) - A Dataset for Hyper-Relational Extraction and a Cube-Filling Approach [59.89749342550104]
本稿では,テキストからより具体的で完全な事実を抽出するハイパーリレーショナル抽出の課題を提案する。
既存のモデルは、3つの実体間の相互作用を考えるモデルを必要とするため、ハイパーリレーショナル抽出を行うことはできない。
テーブル充填手法に着想を得た立方体充填モデルであるCubeREを提案する。
論文 参考訳(メタデータ) (2022-11-18T03:51:28Z) - RelationPrompt: Leveraging Prompts to Generate Synthetic Data for
Zero-Shot Relation Triplet Extraction [65.4337085607711]
ゼロショット関係トリプルト抽出(ZeroRTE)のタスク設定について紹介する。
入力文が与えられた後、抽出された各三重項は、トレーニング段階で関係ラベルが見えないヘッドエンティティ、リレーションラベル、テールエンティティから構成される。
本稿では、言語モデルに構造化テキストを生成するよう促すことで、関係例を合成する。
論文 参考訳(メタデータ) (2022-03-17T05:55:14Z) - OneRel:Joint Entity and Relation Extraction with One Module in One Step [42.576188878294886]
統合エンティティと関係抽出は自然言語処理と知識グラフ構築において不可欠な課題である。
そこで我々は, 結合抽出を細粒度三重分類問題として用いた, OneRel という新しい結合実体と関係抽出モデルを提案する。
論文 参考訳(メタデータ) (2022-03-10T15:09:59Z) - Bridging Text and Knowledge with Multi-Prototype Embedding for Few-Shot
Relational Triple Extraction [40.00702385889112]
本稿では,関係三重項の合成を共同で抽出する,新しいマルチプロトタイプ埋め込みネットワークモデルを提案する。
我々は、エンティティとリレーションの両方に関するテキストと知識を橋渡しするハイブリッド学習機構を設計する。
実験により, 提案手法は, 数発トリプル抽出の性能を向上させることができることを示した。
論文 参考訳(メタデータ) (2020-10-30T04:18:39Z) - Learning to Decouple Relations: Few-Shot Relation Classification with
Entity-Guided Attention and Confusion-Aware Training [49.9995628166064]
本稿では,2つのメカニズムを備えたモデルであるCTEGを提案する。
一方、注意を誘導するEGA機構を導入し、混乱を引き起こす情報をフィルタリングする。
一方,コンフュージョン・アウェア・トレーニング(CAT)法は,関係の識別を明示的に学習するために提案されている。
論文 参考訳(メタデータ) (2020-10-21T11:07:53Z) - TDRE: A Tensor Decomposition Based Approach for Relation Extraction [6.726803950083593]
エンティティペアを非構造化テキストから関係型とともに抽出することは、情報抽出の基本的なサブタスクである。
本稿では,まず,各関係型に富んだ単語対の3次テンソルとして,最終三重項抽出結果をモデル化する。
提案手法は,既存の強いベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2020-10-15T05:29:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。