論文の概要: What Drives Performance in Multilingual Language Models?
- arxiv url: http://arxiv.org/abs/2404.19159v1
- Date: Mon, 29 Apr 2024 23:49:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 15:53:21.660006
- Title: What Drives Performance in Multilingual Language Models?
- Title(参考訳): 言語モデルにおけるパフォーマンスを駆動するものは何か?
- Authors: Sina Bagheri Nezhad, Ameeta Agrawal,
- Abstract要約: 本研究では,多言語多言語大言語モデル(MLLM)の性能に影響を及ぼす要因について検討した。
SIB-200データセットを用いて、マスキング言語モデル、自己回帰モデル、命令調整LDMを含む6つのMLLMについて検討した。
- 参考スコア(独自算出の注目度): 1.7648680700685022
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates the factors influencing the performance of multilingual large language models (MLLMs) across diverse languages. We study 6 MLLMs, including masked language models, autoregressive models, and instruction-tuned LLMs, on the SIB-200 dataset, a topic classification dataset encompassing 204 languages. Our analysis considers three scenarios: ALL languages, SEEN languages (present in the model's pretraining data), and UNSEEN languages (not present or documented in the model's pretraining data in any meaningful way). We examine the impact of factors such as pretraining data size, general resource availability, language family, and script type on model performance. Decision tree analysis reveals that pretraining data size is the most influential factor for SEEN languages. However, interestingly, script type and language family are crucial for UNSEEN languages, highlighting the importance of cross-lingual transfer learning. Notably, model size and architecture do not significantly alter the most important features identified. Our findings provide valuable insights into the strengths and limitations of current MLLMs and hope to guide the development of more effective and equitable multilingual NLP systems.
- Abstract(参考訳): 本研究では,多言語多言語大言語モデル(MLLM)の性能に影響を及ぼす要因について検討した。
SIB-200データセットを用いて, マスキング言語モデル, 自己回帰モデル, 命令調整型LLMを含む6つのMLLMについて検討した。
我々の分析では、all言語、SEEN言語(現在のモデルの事前学習データ)、UNSEEN言語(モデルの事前学習データに意味のある方法で存在または文書化されていない)の3つのシナリオを考察している。
本稿では,事前学習データサイズ,一般資源利用率,言語ファミリー,スクリプトタイプなどの要因がモデル性能に与える影響について検討する。
決定木解析により,SEEN言語において,事前学習データサイズが最も影響のある要因であることが判明した。
しかし、興味深いことに、スクリプトタイプと言語ファミリーはUNSEEN言語にとって不可欠であり、言語間移動学習の重要性を強調している。
特に、モデルのサイズとアーキテクチャは、識別された最も重要な機能を大きく変えない。
本研究は, MLLMの強度と限界に関する貴重な知見を提供し, より効果的で等価な多言語NLPシステムの開発を導くことを願っている。
関連論文リスト
- Multilingual Needle in a Haystack: Investigating Long-Context Behavior of Multilingual Large Language Models [22.859955360764275]
本稿では,MultiLingual Needle-in-a-Haystack(MLNeedle)テストを導入する。
我々はMLNeedleの4つの最先端の大規模言語モデルを評価する。
論文 参考訳(メタデータ) (2024-08-19T17:02:06Z) - GradSim: Gradient-Based Language Grouping for Effective Multilingual
Training [13.730907708289331]
勾配類似度に基づく言語グループ化手法GradSimを提案する。
3つの多言語ベンチマークデータセットに対する実験により、最大のパフォーマンス向上につながることが示された。
言語的特徴の他に、データセットのトピックは言語グループ化において重要な役割を果たす。
論文 参考訳(メタデータ) (2023-10-23T18:13:37Z) - Exploring the Maze of Multilingual Modeling [2.0849578298972835]
我々は,mBERT,XLM-R,GPT-3の3つの言語モデルについて総合評価を行った。
その結果,言語固有の事前学習データの量はモデル性能において重要な役割を担っているが,汎用リソースの可用性,言語ファミリ,スクリプトタイプといった他の要因も重要な特徴であることがわかった。
論文 参考訳(メタデータ) (2023-10-09T04:48:14Z) - CulturaX: A Cleaned, Enormous, and Multilingual Dataset for Large
Language Models in 167 Languages [86.90220551111096]
大規模言語モデル(LLM)のトレーニングデータセットは、完全には公開されないことが多い。
我々は167言語で6.3兆のトークンを持つ相当な多言語データセットであるCulturaXを紹介する。
論文 参考訳(メタデータ) (2023-09-17T23:49:10Z) - The Belebele Benchmark: a Parallel Reading Comprehension Dataset in 122 Language Variants [80.4837840962273]
私たちは122の言語変種にまたがるデータセットであるBelebeleを紹介します。
このデータセットは、高、中、低リソース言語におけるテキストモデルの評価を可能にする。
論文 参考訳(メタデータ) (2023-08-31T17:43:08Z) - Extrapolating Large Language Models to Non-English by Aligning Languages [109.09051737966178]
既存の大きな言語モデルは、異なる言語間で異なる能力を示す。
本稿では,言語間のセマンティックアライメントを構築することで,英語以外の言語に事前学習したLLMを強化する。
論文 参考訳(メタデータ) (2023-08-09T13:32:06Z) - PolyLM: An Open Source Polyglot Large Language Model [57.64420154135178]
我々は6400億(B)トークンでトレーニングされた多言語大言語モデル(LLM)であるPolyLMについて述べる。
その多言語的能力を高めるために,1) バイリンガルデータをトレーニングデータに統合し,2) 事前学習中に英語以外のデータの比率を30%から60%に引き上げるカリキュラム学習戦略を採用する。
さらに,モデル微調整のために,132.7Kの多言語命令を自動的に生成する多言語自己指示手法を提案する。
論文 参考訳(メタデータ) (2023-07-12T09:00:37Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - How do languages influence each other? Studying cross-lingual data sharing during LM fine-tuning [14.02101305717738]
多言語大言語モデル(MLLM)は、多くの異なる言語からのデータに基づいて共同で訓練される。
言語がどの程度、どの条件下で、互いのデータに依存しているかは、まだ不明である。
MLLMは、細調整の初期段階から複数の言語からのデータに依存しており、細調整の進行に伴って、この依存度が徐々に増加することが判明した。
論文 参考訳(メタデータ) (2023-05-22T17:47:41Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - An Empirical Study of Factors Affecting Language-Independent Models [11.976665726887733]
言語に依存しないモデルは、モノリンガルデータを用いて訓練されたモデルに匹敵するか、さらに優れることを示す。
我々は,多くの異なる言語で言語に依存しないモデルを実験し,それらが類型的に類似した言語に適していることを示す。
論文 参考訳(メタデータ) (2019-12-30T22:41:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。