Revenge of the Fallen? Recurrent Models Match Transformers at Predicting Human Language Comprehension Metrics
- URL: http://arxiv.org/abs/2404.19178v2
- Date: Mon, 26 Aug 2024 15:59:03 GMT
- Title: Revenge of the Fallen? Recurrent Models Match Transformers at Predicting Human Language Comprehension Metrics
- Authors: James A. Michaelov, Catherine Arnett, Benjamin K. Bergen,
- Abstract summary: We show that contemporary recurrent models are able to match - and in some cases, exceed - the performance of comparably sized transformers at modeling online human language comprehension.
This suggests that transformer language models are not uniquely suited to this task, and opens up new directions for debates about the extent to which architectural features of language models make them better or worse models of human language comprehension.
- Score: 3.3932293160775298
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformers have generally supplanted recurrent neural networks as the dominant architecture for both natural language processing tasks and for modelling the effect of predictability on online human language comprehension. However, two recently developed recurrent model architectures, RWKV and Mamba, appear to perform natural language tasks comparably to or better than transformers of equivalent scale. In this paper, we show that contemporary recurrent models are now also able to match - and in some cases, exceed - the performance of comparably sized transformers at modeling online human language comprehension. This suggests that transformer language models are not uniquely suited to this task, and opens up new directions for debates about the extent to which architectural features of language models make them better or worse models of human language comprehension.
Related papers
- A Transformer with Stack Attention [84.18399019794036]
We propose augmenting transformer-based language models with a differentiable, stack-based attention mechanism.
Our stack-based attention mechanism can be incorporated into any transformer-based language model and adds a level of interpretability to the model.
We show that the addition of our stack-based attention mechanism enables the transformer to model some, but not all, deterministic context-free languages.
arXiv Detail & Related papers (2024-05-07T17:47:57Z) - In-Context Language Learning: Architectures and Algorithms [73.93205821154605]
We study ICL through the lens of a new family of model problems we term in context language learning (ICLL)
We evaluate a diverse set of neural sequence models on regular ICLL tasks.
arXiv Detail & Related papers (2024-01-23T18:59:21Z) - Rarely a problem? Language models exhibit inverse scaling in their
predictions following few-type quantifiers [0.6091702876917281]
We focus on 'few'-type quantifiers, as in 'few children like toys', which might pose a particular challenge for language models.
We present 960 English sentence stimuli from two human neurolinguistic experiments to 22 autoregressive transformer models of differing sizes.
arXiv Detail & Related papers (2022-12-16T20:01:22Z) - Characterizing Intrinsic Compositionality in Transformers with Tree
Projections [72.45375959893218]
neural models like transformers can route information arbitrarily between different parts of their input.
We show that transformers for three different tasks become more treelike over the course of training.
These trees are predictive of model behavior, with more tree-like models generalizing better on tests of compositional generalization.
arXiv Detail & Related papers (2022-11-02T17:10:07Z) - Pre-Training a Graph Recurrent Network for Language Representation [34.4554387894105]
We consider a graph recurrent network for language model pre-training, which builds a graph structure for each sequence with local token-level communications.
We find that our model can generate more diverse outputs with less contextualized feature redundancy than existing attention-based models.
arXiv Detail & Related papers (2022-09-08T14:12:15Z) - Modeling Target-Side Morphology in Neural Machine Translation: A
Comparison of Strategies [72.56158036639707]
Morphologically rich languages pose difficulties to machine translation.
A large amount of differently inflected word surface forms entails a larger vocabulary.
Some inflected forms of infrequent terms typically do not appear in the training corpus.
Linguistic agreement requires the system to correctly match the grammatical categories between inflected word forms in the output sentence.
arXiv Detail & Related papers (2022-03-25T10:13:20Z) - Transformer Grammars: Augmenting Transformer Language Models with
Syntactic Inductive Biases at Scale [31.293175512404172]
We introduce Transformer Grammars -- a class of Transformer language models that combine expressive power, scalability, and strong performance of Transformers.
We find that Transformer Grammars outperform various strong baselines on multiple syntax-sensitive language modeling evaluation metrics.
arXiv Detail & Related papers (2022-03-01T17:22:31Z) - Constrained Language Models Yield Few-Shot Semantic Parsers [73.50960967598654]
We explore the use of large pretrained language models as few-shot semantics.
The goal in semantic parsing is to generate a structured meaning representation given a natural language input.
We use language models to paraphrase inputs into a controlled sublanguage resembling English that can be automatically mapped to a target meaning representation.
arXiv Detail & Related papers (2021-04-18T08:13:06Z) - Enriching Non-Autoregressive Transformer with Syntactic and
SemanticStructures for Neural Machine Translation [54.864148836486166]
We propose to incorporate the explicit syntactic and semantic structures of languages into a non-autoregressive Transformer.
Our model achieves a significantly faster speed, as well as keeps the translation quality when compared with several state-of-the-art non-autoregressive models.
arXiv Detail & Related papers (2021-01-22T04:12:17Z) - On the Ability and Limitations of Transformers to Recognize Formal
Languages [9.12267978757844]
We provide a construction of Transformers for a subclass of counter languages.
We find that Transformers do well on this subclass, and their learned mechanism strongly correlates with our construction.
Perhaps surprisingly, in contrast to LSTMs, Transformers do well only on a subset of regular languages with degrading performance.
arXiv Detail & Related papers (2020-09-23T17:21:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.