論文の概要: Flight Trajectory Prediction Using an Enhanced CNN-LSTM Network
- arxiv url: http://arxiv.org/abs/2404.19218v1
- Date: Tue, 30 Apr 2024 02:39:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 15:43:32.754299
- Title: Flight Trajectory Prediction Using an Enhanced CNN-LSTM Network
- Title(参考訳): 拡張CNN-LSTMネットワークを用いた飛行軌道予測
- Authors: Qinzhi Hao, Jiali Zhang, Tengyu Jing, Wei Wang,
- Abstract要約: 本稿では,戦闘機の飛行軌道予測手法として拡張CNN-LSTMネットワークを提案する。
提案手法は,従来のCNN-LSTM法と比較して軌道予測精度を向上し,ADEおよびFDE指標の32%と34%の改善を行った。
- 参考スコア(独自算出の注目度): 3.336247245655282
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aiming at the problem of low accuracy of flight trajectory prediction caused by the high speed of fighters, the diversity of tactical maneuvers, and the transient nature of situational change in close range air combat, this paper proposes an enhanced CNN-LSTM network as a fighter flight trajectory prediction method. Firstly, we extract spatial features from fighter trajectory data using CNN, aggregate spatial features of multiple fighters using the social-pooling module to capture geographic information and positional relationships in the trajectories, and use the attention mechanism to capture mutated trajectory features in air combat; subsequently, we extract temporal features by using the memory nature of LSTM to capture long-term temporal dependence in the trajectories; and finally, we merge the temporal and spatial features to predict the flight trajectories of enemy fighters. Extensive simulation experiments verify that the proposed method improves the trajectory prediction accuracy compared to the original CNN-LSTM method, with the improvements of 32% and 34% in ADE and FDE indicators.
- Abstract(参考訳): 本稿では,戦闘機の高速飛行による飛行軌跡予測の低精度化,戦術的操作の多様性,近距離航空戦における状況変化の過渡性といった問題に着目し,戦闘機飛行軌跡予測手法としてのCNN-LSTMネットワークを提案する。
まず,CNNを用いた戦闘機の空間的特徴の抽出,ソーシャル・プール・モジュールを用いた複数の戦闘機の空間的特徴の集約,気道内の地理的情報と位置関係の収集,気道内における可変軌跡の特徴の捕捉,そしてLSTMの記憶特性を用いた時間的特徴の抽出,そして,その時間的特徴と空間的特徴の融合により,敵戦闘機の飛行軌跡の予測を行う。
大規模シミュレーション実験により,提案手法は従来のCNN-LSTM法と比較して軌道予測精度が向上し,ADEおよびFDE指標では32%,34%の改善が見られた。
関連論文リスト
- VECTOR: Velocity-Enhanced GRU Neural Network for Real-Time 3D UAV Trajectory Prediction [2.1825723033513165]
シーケンスベースニューラルネットワークにおけるGRU(Gated Recurrent Units)を用いた新しいトラジェクトリ予測手法を提案する。
我々は、合成と実世界のUAV軌跡データの両方を使用し、幅広い飛行パターン、速度、機敏性を捉えています。
GRUベースのモデルは、平均二乗誤差(MSE)を2×10-8に抑えながら、最先端のRNNアプローチを著しく上回っている。
論文 参考訳(メタデータ) (2024-10-24T07:16:42Z) - Data-driven Probabilistic Trajectory Learning with High Temporal Resolution in Terminal Airspace [9.688760969026305]
混合モデルとSeq2seqに基づくニューラルネットワークの予測および特徴抽出機能を活用するデータ駆動学習フレームワークを提案する。
このフレームワークでトレーニングした後、学習したモデルは長期予測精度を大幅に向上させることができる。
提案手法の精度と有効性は,予測された軌道と基礎的真実とを比較して評価する。
論文 参考訳(メタデータ) (2024-09-25T21:08:25Z) - Fighter flight trajectory prediction based on spatio-temporal graphcial attention network [8.938877973527779]
本稿では、符号化構造と復号構造を用いて、飛行軌道の予測を行うネットワーク時間グラフアテンション(ST-GAT)を提案する。
トランスフォーマー・ブランチ・ネットワークは、歴史的軌跡の特徴を抽出し、戦闘機の時間状態が将来の軌跡に与える影響を捉えるために使用される。
GATブランチネットワークは、歴史的軌跡の空間的特徴を抽出し、戦闘機間の潜在的な空間的相関を捉えるために使用される。
論文 参考訳(メタデータ) (2024-05-13T02:47:57Z) - Inferring Traffic Models in Terminal Airspace from Flight Tracks and
Procedures [52.25258289718559]
本稿では,レーダ監視データから収集したプロシージャデータとフライトトラックから可変性を学習可能な確率モデルを提案する。
任意の航空機数を含む交通量を生成するために,ペアワイズモデルを用いる方法を示す。
論文 参考訳(メタデータ) (2023-03-17T13:58:06Z) - Phased Flight Trajectory Prediction with Deep Learning [8.898269198985576]
過去10年間で民間航空会社や民間機が前例のない増加を遂げたことは、航空交通管理の課題となっている。
正確な飛行軌跡予測は、安全かつ秩序ある飛行の決定に寄与する航空輸送管理において非常に重要である。
本研究では,大型旅客・輸送航空機の飛行軌道予測における最先端手法よりも優れた位相付き飛行軌道予測フレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-17T02:16:02Z) - Human Trajectory Prediction via Counterfactual Analysis [87.67252000158601]
複雑な動的環境における人間の軌道予測は、自律走行車やインテリジェントロボットにおいて重要な役割を果たす。
既存のほとんどの手法は、歴史の軌跡や環境からの相互作用の手がかりから行動の手がかりによって将来の軌跡を予測することを学習している。
本研究では,予測軌跡と入力手がかりの因果関係を調べるために,人間の軌跡予測に対する反実解析手法を提案する。
論文 参考訳(メタデータ) (2021-07-29T17:41:34Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
動脈交通予測は 現代のインテリジェント交通システムの発展に 重要な役割を担っています
動脈交通予測に関する既存の研究の多くは、ループセンサからの流量と占有率の時間的測定のみを考慮し、上流と下流の検出器間のリッチな空間的関係を無視している。
我々は,信号タイミング計画から発生する空間情報を用いて,深層学習アプローチである拡散畳み込みリカレントニューラルネットワークを強化することで,このギャップを埋める。
論文 参考訳(メタデータ) (2020-12-25T01:40:29Z) - The Unsupervised Method of Vessel Movement Trajectory Prediction [1.2617078020344619]
本稿では,船体移動軌跡予測の教師なし手法を提案する。
これは、点間の時間差、試験された点と予測された前方および後方位置の間のスケールした誤差距離、時空間の角度からなる3次元空間におけるデータを表す。
多くの統計的学習法や深層学習法とは異なり、クラスタリングに基づく軌道再構成法は計算コストのかかるモデルトレーニングを必要としない。
論文 参考訳(メタデータ) (2020-07-27T17:45:21Z) - Transition control of a tail-sitter UAV using recurrent neural networks [80.91076033926224]
制御戦略は姿勢と速度安定化に基づいている。
RNNは高非線形空力項の推定に用いられる。
その結果, 遷移操作時の直線速度とピッチ角の収束性を示した。
論文 参考訳(メタデータ) (2020-06-29T21:33:30Z) - FMA-ETA: Estimating Travel Time Entirely Based on FFN With Attention [88.33372574562824]
フィードフォワードネットワーク(FFN, FFN, 複数要素自己認識(FMA-ETA)に基づく新しいフレームワークを提案する。
異なるカテゴリの特徴に対処し,情報を意図的に集約する,新しい多要素自己認識機構を提案する。
実験の結果、FMA-ETAは予測精度において最先端の手法と競合し、推論速度は大幅に向上した。
論文 参考訳(メタデータ) (2020-06-07T08:10:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。