論文の概要: Enhancing GUI Exploration Coverage of Android Apps with Deep Link-Integrated Monkey
- arxiv url: http://arxiv.org/abs/2404.19307v1
- Date: Tue, 30 Apr 2024 07:24:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 15:14:12.821925
- Title: Enhancing GUI Exploration Coverage of Android Apps with Deep Link-Integrated Monkey
- Title(参考訳): ディープリンク付きMonkeyによるAndroidアプリのGUI探索カバレッジ向上
- Authors: Han Hu, Han Wang, Ruiqi Dong, Xiao Chen, Chunyang Chen,
- Abstract要約: Delm氏は動的探索プロセスを監督し、ツールを無意味なテストループから探索されていないGUIページへと誘導する。
我々は,Delmのアクティビティコンテキストモックアップ,アクティビティカバレッジ,メソッドカバレッジ,クラッシュ検出における有効性を評価する実験を行った。
- 参考スコア(独自算出の注目度): 32.81564148015536
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mobile apps are ubiquitous in our daily lives for supporting different tasks such as reading and chatting. Despite the availability of many GUI testing tools, app testers still struggle with low testing code coverage due to tools frequently getting stuck in loops or overlooking activities with concealed entries. This results in a significant amount of testing time being spent on redundant and repetitive exploration of a few GUI pages. To address this, we utilize Android's deep links, which assist in triggering Android intents to lead users to specific pages and introduce a deep link-enhanced exploration method. This approach, integrated into the testing tool Monkey, gives rise to Delm (Deep Link-enhanced Monkey). Delm oversees the dynamic exploration process, guiding the tool out of meaningless testing loops to unexplored GUI pages. We provide a rigorous activity context mock-up approach for triggering existing Android intents to discover more activities with hidden entrances. We conduct experiments to evaluate Delm's effectiveness on activity context mock-up, activity coverage, method coverage, and crash detection. The findings reveal that Delm can mock up more complex activity contexts and significantly outperform state-of-the-art baselines with 27.2\% activity coverage, 21.13\% method coverage, and 23.81\% crash detection.
- Abstract(参考訳): モバイルアプリは、読書やチャットといったさまざまなタスクをサポートするために、日々の生活の中でユビキタスです。
多くのGUIテストツールが利用可能であるにも関わらず、ツールがループで立ち往生したり、隠されたエントリでアクティビティを見落としたりするため、アプリテスタはコードカバレッジの低さに苦慮している。
結果として、少数のGUIページの冗長かつ反復的な探索に多くのテスト時間が費やされている。
これを解決するために、Androidのディープリンクを使用し、Androidインテントをトリガーしてユーザを特定のページに誘導し、ディープリンク強化探索手法を導入する。
このアプローチはテストツールMonkeyに統合され、Delm(Deep Link-enhanced Monkey)が生まれます。
Delm氏は動的探索プロセスを監督し、ツールを無意味なテストループから探索されていないGUIページへと誘導する。
隠れた入り口でより多くのアクティビティを発見するために、既存のAndroidインテントをトリガーする、厳格なアクティビティコンテキストモックアップアプローチを提供する。
我々は,Delmのアクティビティコンテキストモックアップ,アクティビティカバレッジ,メソッドカバレッジ,クラッシュ検出における有効性を評価する実験を行った。
この結果から、Delmはより複雑なアクティビティコンテキストをモックアップし、27.2\%のアクティビティカバレッジ、21.13\%のメソッドカバレッジ、23.81\%のクラッシュ検出で最先端のベースラインを著しく上回ります。
関連論文リスト
- Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
共同検出・埋め込み(JDE)トラッカーは多目的追跡(MOT)タスクにおいて優れた性能を示した。
TCBTrackという名前のトラッカーは、複数の公開ベンチマークで最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-07-19T07:48:45Z) - Autonomous Large Language Model Agents Enabling Intent-Driven Mobile GUI
Testing [17.24045904273874]
そこで我々は,Android用の自動GUIテストエージェントであるDroidAgentを提案する。
これはLarge Language Modelと、長期記憶や短期記憶などのサポートメカニズムに基づいている。
DroidAgentは61%のアクティビティカバレッジを達成したが、現在の最先端のGUIテスト技術では51%だった。
論文 参考訳(メタデータ) (2023-11-15T01:59:40Z) - Make LLM a Testing Expert: Bringing Human-like Interaction to Mobile GUI
Testing via Functionality-aware Decisions [23.460051600514806]
GPTDroidは、モバイルアプリ向けのQ&AベースのGUIテスティングフレームワークである。
機能認識型メモリプロンプト機構を導入する。
アクティビティのカバレッジが32%向上し、より高速な速度で31%のバグを検出する。
論文 参考訳(メタデータ) (2023-10-24T12:30:26Z) - Testing the Limits: Unusual Text Inputs Generation for Mobile App Crash
Detection with Large Language Model [23.460051600514806]
本稿では,モバイルアプリのクラッシュ検出のための異常なテキスト入力を自動的に生成するInputBlasterを提案する。
異常な入力生成問題をテストジェネレータのセットを生成するタスクとして定式化し、それぞれが異常なテキスト入力のバッチを生成する。
36のテキスト入力ウィジェットで評価され、31の人気のあるAndroidアプリを含むキャッシュバグがあり、その結果、バグ検出率は78%で、最高のベースラインよりも136%高い。
論文 参考訳(メタデータ) (2023-10-24T09:10:51Z) - SparseTrack: Multi-Object Tracking by Performing Scene Decomposition
based on Pseudo-Depth [84.64121608109087]
2次元画像から目標の相対的な深さを求めるための擬似深度推定法を提案する。
次に,得られた深度情報を用いて,高密度なターゲットセットを複数のスパースなターゲットサブセットに変換するディープカスケードマッチング(DCM)アルゴリズムを設計する。
擬似深度法とDCM戦略をデータアソシエーションプロセスに統合することにより、SparseTrackと呼ばれる新しいトラッカーを提案する。
論文 参考訳(メタデータ) (2023-06-08T14:36:10Z) - Chatting with GPT-3 for Zero-Shot Human-Like Mobile Automated GUI
Testing [23.460051600514806]
GPTDroid を提案し,GUI ページ情報を LLM に渡してテストスクリプトを抽出することにより,大規模言語モデルにモバイルアプリとのチャットを依頼する。
そこで我々はGUIページの静的コンテキストと反復テストプロセスの動的コンテキストを抽出する。
Google Playの86のアプリ上でGPTDroidを評価し、そのアクティビティカバレッジは71%で、最高のベースラインよりも32%高く、最高のベースラインよりも高速で36%多くのバグを検出することができます。
論文 参考訳(メタデータ) (2023-05-16T13:46:52Z) - Effective, Platform-Independent GUI Testing via Image Embedding and Reinforcement Learning [15.458315113767686]
アプリケーションテストに有効なプラットフォームに依存しないアプローチであるPIRLTestを提案する。
コンピュータビジョンと強化学習技術を利用して、新しいシナジスティックな方法で自動テストを行う。
PILTestは、Q-networkを使用して特定の状態-アクションペアの値を見積もる好奇心駆動型戦略のガイダンスで、アプリを探索する。
論文 参考訳(メタデータ) (2022-08-19T01:51:16Z) - TapNet: The Design, Training, Implementation, and Applications of a
Multi-Task Learning CNN for Off-Screen Mobile Input [75.05709030478073]
本稿では,スマートフォンのタップを検出するマルチタスクネットワークであるTapNetの設計,トレーニング,実装,応用について述べる。
TapNetはデバイス間のデータから共同で学習し、タップ方向やタップ位置を含む複数のタップ特性を同時に認識することができる。
論文 参考訳(メタデータ) (2021-02-18T00:45:41Z) - Probabilistic Tracklet Scoring and Inpainting for Multiple Object
Tracking [83.75789829291475]
本稿では,トラックレット提案の確率的自己回帰運動モデルを提案する。
これは、我々のモデルを訓練して、自然のトラックレットの基盤となる分布を学習することで達成される。
我々の実験は、挑戦的なシーケンスにおける物体の追跡におけるアプローチの優位性を実証している。
論文 参考訳(メタデータ) (2020-12-03T23:59:27Z) - ZSTAD: Zero-Shot Temporal Activity Detection [107.63759089583382]
本研究では,ゼロショット時間的活動検出(ZSTAD)と呼ばれる新たなタスク設定を提案する。
このソリューションのアーキテクチャとして,R-C3Dに基づくエンドツーエンドのディープネットワークを設計する。
THUMOS14とCharadesデータセットの両方の実験は、目に見えない活動を検出するという点で有望なパフォーマンスを示している。
論文 参考訳(メタデータ) (2020-03-12T02:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。