論文の概要: TapNet: The Design, Training, Implementation, and Applications of a
Multi-Task Learning CNN for Off-Screen Mobile Input
- arxiv url: http://arxiv.org/abs/2102.09087v1
- Date: Thu, 18 Feb 2021 00:45:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-19 14:13:22.845642
- Title: TapNet: The Design, Training, Implementation, and Applications of a
Multi-Task Learning CNN for Off-Screen Mobile Input
- Title(参考訳): TapNet: 画面外モバイル入力のためのマルチタスク学習CNNの設計、トレーニング、実装、およびアプリケーション
- Authors: Michael Xuelin Huang, Yang Li, Nazneen Nazneen, Alexander Chao, Shumin
Zhai
- Abstract要約: 本稿では,スマートフォンのタップを検出するマルチタスクネットワークであるTapNetの設計,トレーニング,実装,応用について述べる。
TapNetはデバイス間のデータから共同で学習し、タップ方向やタップ位置を含む複数のタップ特性を同時に認識することができる。
- 参考スコア(独自算出の注目度): 75.05709030478073
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To make off-screen interaction without specialized hardware practical, we
investigate using deep learning methods to process the common built-in IMU
sensor (accelerometers and gyroscopes) on mobile phones into a useful set of
one-handed interaction events. We present the design, training, implementation
and applications of TapNet, a multi-task network that detects tapping on the
smartphone. With phone form factor as auxiliary information, TapNet can jointly
learn from data across devices and simultaneously recognize multiple tap
properties, including tap direction and tap location. We developed two datasets
consisting of over 135K training samples, 38K testing samples, and 32
participants in total. Experimental evaluation demonstrated the effectiveness
of the TapNet design and its significant improvement over the state of the art.
Along with the datasets,
(https://sites.google.com/site/michaelxlhuang/datasets/tapnet-dataset), and
extensive experiments, TapNet establishes a new technical foundation for
off-screen mobile input.
- Abstract(参考訳): 特殊なハードウェアを使わずにオフスクリーンインタラクションを実現するため,携帯端末に内蔵されている一般的なIMUセンサ(加速度計,ジャイロスコープ)を片手インタラクションイベントの有用なセットに加工する深層学習手法について検討した。
本稿では,スマートフォンのタップを検出するマルチタスクネットワークであるTapNetの設計,トレーニング,実装,応用について述べる。
電話フォームファクターを補助情報として、TapNetはデバイス間のデータから共同で学習し、タップ方向やタップ位置などの複数のタップ特性を同時に認識する。
135K以上のトレーニングサンプル,38Kテストサンプル,32名の参加者からなる2つのデータセットを開発した。
実験的評価により,tapnetの設計の有効性が実証され,その性能が向上した。
データセット(https://sites.google.com/site/michaelxlhuang/datasets/tapnet-datasets)と広範な実験に加えて、TapNetはオフスクリーンのモバイル入力のための新しい技術基盤を確立する。
関連論文リスト
- MuJo: Multimodal Joint Feature Space Learning for Human Activity Recognition [2.7532797256542403]
HAR(Human Activity Recognition)は、医療、スポーツ、フィットネス、セキュリティなど、幅広い分野で応用されているAIの長年の問題である。
本研究では,HAR 性能を向上させるため,総合的な Fitness Multimodal Activity データセット (FiMAD) を導入する。
MM-Fit,myoGym, MotionSense, MHEALTH などの実HARデータセット上で,FiMAD で事前学習した分類器の性能が向上することを示す。
論文 参考訳(メタデータ) (2024-06-06T08:42:36Z) - Learning Visuotactile Skills with Two Multifingered Hands [80.99370364907278]
マルチフィンガーハンドとバイソタクティブルデータを用いたバイマニアルシステムを用いて,人間の実演からの学習を探索する。
以上の結果から,バイスオタクティブルデータからの両指多指操作における有望な進歩が示唆された。
論文 参考訳(メタデータ) (2024-04-25T17:59:41Z) - FedOpenHAR: Federated Multi-Task Transfer Learning for Sensor-Based
Human Activity Recognition [0.0]
本稿では,センサを用いた人間行動認識とデバイス位置識別の両課題に対して,フェデレート・トランスファー・ラーニングをマルチタスク方式で検討する。
OpenHARフレームワークは10個の小さなデータセットを含むモデルをトレーニングするために使用される。
タスク固有でパーソナライズされたフェデレーションモデルを用いたトランスファーラーニングとトレーニングにより、各クライアントを個別に訓練し、完全集中型アプローチよりも高い精度で学習した。
論文 参考訳(メタデータ) (2023-11-13T21:31:07Z) - Your Identity is Your Behavior -- Continuous User Authentication based
on Machine Learning and Touch Dynamics [0.0]
本研究は,LG V30+を用いた40名の被験者から収集したタッチダイナミクスのデータセットを用いた。
参加者は4つのモバイルゲーム、Diep.io、Slither、Minecraftをそれぞれ10分間プレイした。
研究の結果,3つのアルゴリズムがそれぞれ,個々のタッチダイナミクスに基づいてユーザを効果的に分類できることが判明した。
論文 参考訳(メタデータ) (2023-04-24T13:45:25Z) - Simultaneous prediction of hand gestures, handedness, and hand keypoints
using thermal images [0.6087960723103347]
赤外線カメラで捉えたサーマルデータを用いて手指のジェスチャー分類,手指検出,手指キーポイントの局所化を同時に行う手法を提案する。
提案手法は,共有エンコーダデコーダ層を含む新しい深層マルチタスク学習アーキテクチャを用いて,各タスクに専用の3つのブランチを付加する。
論文 参考訳(メタデータ) (2023-03-02T19:25:40Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
ネットワークデバイス間での分散機械学習を実現するために、フェデレートラーニング(FL)が提案されている。
デバイス上のストレージがFLの性能に与える影響はまだ調査されていない。
本研究では,デバイス上のストレージを限定したFLのオンラインデータ選択について検討する。
論文 参考訳(メタデータ) (2022-09-01T03:27:33Z) - A Wireless-Vision Dataset for Privacy Preserving Human Activity
Recognition [53.41825941088989]
アクティビティ認識の堅牢性を改善するため,WiNN(WiFi-based and video-based neural network)が提案されている。
以上の結果から,WiViデータセットは一次需要を満足し,パイプライン内の3つのブランチはすべて,80%以上のアクティビティ認識精度を維持していることがわかった。
論文 参考訳(メタデータ) (2022-05-24T10:49:11Z) - Mobile Behavioral Biometrics for Passive Authentication [65.94403066225384]
本研究は, 単モーダルおよび多モーダルな行動的生体特性の比較分析を行った。
HuMIdbは、最大かつ最も包括的なモバイルユーザインタラクションデータベースである。
我々の実験では、最も識別可能な背景センサーは磁力計であり、タッチタスクではキーストロークで最良の結果が得られる。
論文 参考訳(メタデータ) (2022-03-14T17:05:59Z) - Exploring System Performance of Continual Learning for Mobile and
Embedded Sensing Applications [19.334890205028568]
本研究は,3つの主要な連続学習手法の性能を定量化する総合的な実証的研究である。
エッジデバイス上でのエンドツーエンドの継続的学習フレームワークを実装した。
メモリ予算が限られているデバイス上で連続的な学習が実現可能であることを初めて実証する。
論文 参考訳(メタデータ) (2021-10-25T22:06:26Z) - Visual Imitation Made Easy [102.36509665008732]
本稿では,ロボットへのデータ転送を容易にしながら,データ収集プロセスを単純化する,模倣のための代替インターフェースを提案する。
我々は、データ収集装置やロボットのエンドエフェクターとして、市販のリーチ・グラブラー補助具を使用する。
我々は,非包括的プッシュと包括的積み重ねという2つの課題について実験的に評価した。
論文 参考訳(メタデータ) (2020-08-11T17:58:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。