QLSC: A Query Latent Semantic Calibrator for Robust Extractive Question Answering
- URL: http://arxiv.org/abs/2404.19316v1
- Date: Tue, 30 Apr 2024 07:34:42 GMT
- Title: QLSC: A Query Latent Semantic Calibrator for Robust Extractive Question Answering
- Authors: Sheng Ouyang, Jianzong Wang, Yong Zhang, Zhitao Li, Ziqi Liang, Xulong Zhang, Ning Cheng, Jing Xiao,
- Abstract summary: We propose a unique scaling strategy to capture latent semantic center features of queries.
These features are seamlessly integrated into traditional query and passage embeddings.
Our approach diminishes sensitivity to variations in text format and boosts the model's capability in pinpointing accurate answers.
- Score: 32.436530949623155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extractive Question Answering (EQA) in Machine Reading Comprehension (MRC) often faces the challenge of dealing with semantically identical but format-variant inputs. Our work introduces a novel approach, called the ``Query Latent Semantic Calibrator (QLSC)'', designed as an auxiliary module for existing MRC models. We propose a unique scaling strategy to capture latent semantic center features of queries. These features are then seamlessly integrated into traditional query and passage embeddings using an attention mechanism. By deepening the comprehension of the semantic queries-passage relationship, our approach diminishes sensitivity to variations in text format and boosts the model's capability in pinpointing accurate answers. Experimental results on robust Question-Answer datasets confirm that our approach effectively handles format-variant but semantically identical queries, highlighting the effectiveness and adaptability of our proposed method.
Related papers
- Answer, Assemble, Ace: Understanding How Transformers Answer Multiple Choice Questions [103.20281438405111]
Multiple-choice question answering (MCQA) is a key competence of performant transformer language models.
We employ vocabulary projection and activation patching methods to localize key hidden states that encode relevant information.
We show that prediction of a specific answer symbol is causally attributed to a single middle layer, and specifically its multi-head self-attention mechanism.
arXiv Detail & Related papers (2024-07-21T00:10:23Z) - A General and Flexible Multi-concept Parsing Framework for Multilingual Semantic Matching [60.51839859852572]
We propose to resolve the text into multi concepts for multilingual semantic matching to liberate the model from the reliance on NER models.
We conduct comprehensive experiments on English datasets QQP and MRPC, and Chinese dataset Medical-SM.
arXiv Detail & Related papers (2024-03-05T13:55:16Z) - LLMs for Test Input Generation for Semantic Caches [1.8628177380024746]
Large language models (LLMs) enable state-of-the-art semantic capabilities to be added to software systems.
At scale, the cost of serving thousands of users increases massively affecting also user experience.
We present VaryGen, an approach for using LLMs for test input generation that produces similar questions from unstructured text documents.
arXiv Detail & Related papers (2024-01-16T06:16:33Z) - Modeling Complex Dialogue Mappings via Sentence Semantic Segmentation
Guided Conditional Variational Auto-Encoder [23.052838118122835]
Complex dialogue mappings (CDM), including one-to-many and many-to-one mappings, tend to make dialogue models generate incoherent or dull responses.
This paper proposes a Sentence Semantic textbfSegmentation guided textbfConditional textbfVariational textbfAuto-textbfEncoder (SegCVAE) method which can model and take advantages of the CDM data.
arXiv Detail & Related papers (2022-12-01T02:31:10Z) - KECP: Knowledge Enhanced Contrastive Prompting for Few-shot Extractive
Question Answering [28.18555591429343]
We propose a novel framework named Knowledge Enhanced Contrastive Prompt-tuning (KECP)
Instead of adding pointer heads to PLMs, we transform the task into a non-autoregressive Masked Language Modeling (MLM) generation problem.
Our method consistently outperforms state-of-the-art approaches in few-shot settings by a large margin.
arXiv Detail & Related papers (2022-05-06T08:31:02Z) - Event Detection as Question Answering with Entity Information [5.761450181435801]
We propose a paradigm for the task of event detection (ED) by casting it as a question-answering (QA) problem with the possibility of multiple answers and the support of entities.
The extraction of event triggers is, thus, transformed into the task of identifying answer spans from a context, while also focusing on the surrounding entities.
Experiments on the ACE2005 corpus demonstrate that the proposed paradigm is a viable solution for the ED task and it significantly outperforms the state-of-the-art models.
arXiv Detail & Related papers (2021-04-14T16:53:11Z) - A Wrong Answer or a Wrong Question? An Intricate Relationship between
Question Reformulation and Answer Selection in Conversational Question
Answering [15.355557454305776]
We show that question rewriting (QR) of the conversational context allows to shed more light on this phenomenon.
We present the results of this analysis on the TREC CAsT and QuAC (CANARD) datasets.
arXiv Detail & Related papers (2020-10-13T06:29:51Z) - Tradeoffs in Sentence Selection Techniques for Open-Domain Question
Answering [54.541952928070344]
We describe two groups of models for sentence selection: QA-based approaches, which run a full-fledged QA system to identify answer candidates, and retrieval-based models, which find parts of each passage specifically related to each question.
We show that very lightweight QA models can do well at this task, but retrieval-based models are faster still.
arXiv Detail & Related papers (2020-09-18T23:39:15Z) - Visual Question Answering with Prior Class Semantics [50.845003775809836]
We show how to exploit additional information pertaining to the semantics of candidate answers.
We extend the answer prediction process with a regression objective in a semantic space.
Our method brings improvements in consistency and accuracy over a range of question types.
arXiv Detail & Related papers (2020-05-04T02:46:31Z) - Robust Question Answering Through Sub-part Alignment [53.94003466761305]
We model question answering as an alignment problem.
We train our model on SQuAD v1.1 and test it on several adversarial and out-of-domain datasets.
arXiv Detail & Related papers (2020-04-30T09:10:57Z) - Improve Variational Autoencoder for Text Generationwith Discrete Latent
Bottleneck [52.08901549360262]
Variational autoencoders (VAEs) are essential tools in end-to-end representation learning.
VAEs tend to ignore latent variables with a strong auto-regressive decoder.
We propose a principled approach to enforce an implicit latent feature matching in a more compact latent space.
arXiv Detail & Related papers (2020-04-22T14:41:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.