G2LTraj: A Global-to-Local Generation Approach for Trajectory Prediction
- URL: http://arxiv.org/abs/2404.19330v1
- Date: Tue, 30 Apr 2024 07:53:34 GMT
- Title: G2LTraj: A Global-to-Local Generation Approach for Trajectory Prediction
- Authors: Zhanwei Zhang, Zishuo Hua, Minghao Chen, Wei Lu, Binbin Lin, Deng Cai, Wenxiao Wang,
- Abstract summary: We propose G2LTraj, a global-to-local generation approach for trajectory prediction.
We generate a series of global key steps that uniformly cover the entire future time range.
In this way, we prevent the accumulated error from propagating beyond the adjacent key steps.
- Score: 23.181232260820373
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting future trajectories of traffic agents accurately holds substantial importance in various applications such as autonomous driving. Previous methods commonly infer all future steps of an agent either recursively or simultaneously. However, the recursive strategy suffers from the accumulated error, while the simultaneous strategy overlooks the constraints among future steps, resulting in kinematically infeasible predictions. To address these issues, in this paper, we propose G2LTraj, a plug-and-play global-to-local generation approach for trajectory prediction. Specifically, we generate a series of global key steps that uniformly cover the entire future time range. Subsequently, the local intermediate steps between the adjacent key steps are recursively filled in. In this way, we prevent the accumulated error from propagating beyond the adjacent key steps. Moreover, to boost the kinematical feasibility, we not only introduce the spatial constraints among key steps but also strengthen the temporal constraints among the intermediate steps. Finally, to ensure the optimal granularity of key steps, we design a selectable granularity strategy that caters to each predicted trajectory. Our G2LTraj significantly improves the performance of seven existing trajectory predictors across the ETH, UCY and nuScenes datasets. Experimental results demonstrate its effectiveness. Code will be available at https://github.com/Zhanwei-Z/G2LTraj.
Related papers
- C$^{2}$INet: Realizing Incremental Trajectory Prediction with Prior-Aware Continual Causal Intervention [10.189508227447401]
Trajectory prediction for multi-agents in complex scenarios is crucial for applications like autonomous driving.
Existing methods often overlook environmental biases, which leads to poor generalization.
We propose the Continual Causal Intervention (C$2$INet) method for generalizable multi-agent trajectory prediction.
arXiv Detail & Related papers (2024-11-19T08:01:20Z) - Progressive Pretext Task Learning for Human Trajectory Prediction [44.07301075351432]
We introduce a novel Progressive Pretext Task learning (PPT) framework, which progressively enhances the model's capacity of capturing short-term dynamics and long-term dependencies.
We design a Transformer-based trajectory predictor, which is able to achieve highly efficient two-step reasoning.
arXiv Detail & Related papers (2024-07-16T10:48:18Z) - Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - Graph-based Spatial Transformer with Memory Replay for Multi-future
Pedestrian Trajectory Prediction [13.466380808630188]
We propose a model to forecast multiple paths based on a historical trajectory.
Our method can exploit the spatial information as well as correct the temporally inconsistent trajectories.
Our experiments show that the proposed model achieves state-of-the-art performance on multi-future prediction and competitive results for single-future prediction.
arXiv Detail & Related papers (2022-06-12T10:25:12Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
We present a new framework to formulate the trajectory prediction task as a reverse process of motion indeterminacy diffusion (MID)
We encode the history behavior information and the social interactions as a state embedding and devise a Transformer-based diffusion model to capture the temporal dependencies of trajectories.
Experiments on the human trajectory prediction benchmarks including the Stanford Drone and ETH/UCY datasets demonstrate the superiority of our method.
arXiv Detail & Related papers (2022-03-25T16:59:08Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - Long-Horizon Visual Planning with Goal-Conditioned Hierarchical
Predictors [124.30562402952319]
The ability to predict and plan into the future is fundamental for agents acting in the world.
Current learning approaches for visual prediction and planning fail on long-horizon tasks.
We propose a framework for visual prediction and planning that is able to overcome both of these limitations.
arXiv Detail & Related papers (2020-06-23T17:58:56Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - Sub-Goal Trees -- a Framework for Goal-Based Reinforcement Learning [20.499747716864686]
Many AI problems, in robotics and other domains, are goal-based, essentially seeking trajectories leading to various goal states.
We propose a new RL framework, derived from a dynamic programming equation for the all pairs shortest path (APSP) problem.
We show that this approach has computational benefits for both standard and approximate dynamic programming.
arXiv Detail & Related papers (2020-02-27T12:32:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.