論文の概要: Multi-Scale Heterogeneity-Aware Hypergraph Representation for Histopathology Whole Slide Images
- arxiv url: http://arxiv.org/abs/2404.19334v1
- Date: Tue, 30 Apr 2024 08:00:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 15:04:27.106015
- Title: Multi-Scale Heterogeneity-Aware Hypergraph Representation for Histopathology Whole Slide Images
- Title(参考訳): スライド画像の病理組織学におけるマルチスケール不均一性を考慮したハイパーグラフ表現法
- Authors: Minghao Han, Xukun Zhang, Dingkang Yang, Tao Liu, Haopeng Kuang, Jinghui Feng, Lihua Zhang,
- Abstract要約: 生存予測は, 患者のコホート内における生存係数の予測を目的とした, 複雑な順序回帰課題である。
既存のディープラーニングアプローチのほとんどは、様々な種類の生物学的実体間の多様な相互作用を明らかにすることができない。
マルチスケールなヘテロジニティ対応ハイパーグラフ表現フレームワークを提案する。
- 参考スコア(独自算出の注目度): 10.582822206174113
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Survival prediction is a complex ordinal regression task that aims to predict the survival coefficient ranking among a cohort of patients, typically achieved by analyzing patients' whole slide images. Existing deep learning approaches mainly adopt multiple instance learning or graph neural networks under weak supervision. Most of them are unable to uncover the diverse interactions between different types of biological entities(\textit{e.g.}, cell cluster and tissue block) across multiple scales, while such interactions are crucial for patient survival prediction. In light of this, we propose a novel multi-scale heterogeneity-aware hypergraph representation framework. Specifically, our framework first constructs a multi-scale heterogeneity-aware hypergraph and assigns each node with its biological entity type. It then mines diverse interactions between nodes on the graph structure to obtain a global representation. Experimental results demonstrate that our method outperforms state-of-the-art approaches on three benchmark datasets. Code is publicly available at \href{https://github.com/Hanminghao/H2GT}{https://github.com/Hanminghao/H2GT}.
- Abstract(参考訳): 生存予測(Survival prediction)は、患者のスライド画像全体を分析することで達成される、患者のコホート内の生存係数のランク付けを予測することを目的とした複雑な順序回帰タスクである。
既存のディープラーニングアプローチは主に、弱監督下で複数のインスタンス学習またはグラフニューラルネットワークを採用する。
それらの多くは、様々な種類の生物学的実体(\textit{e g }、細胞クラスター、組織ブロック)間の様々な相互作用を複数のスケールで発見することができず、そのような相互作用は患者の生存予測に不可欠である。
そこで本研究では,マルチスケールなヘテロジニティ対応ハイパーグラフ表現フレームワークを提案する。
具体的には,まずマルチスケールなヘテロジニティを意識したハイパーグラフを構築し,それぞれのノードにその生物学的実体型を割り当てる。
その後、グラフ構造上のノード間の多様な相互作用をマイニングし、グローバルな表現を得る。
実験結果から,本手法は3つのベンチマークデータセットの最先端手法よりも優れていることが示された。
コードは \href{https://github.com/Hanminghao/H2GT}{https://github.com/Hanminghao/H2GT} で公開されている。
関連論文リスト
- Histopathology Whole Slide Image Analysis with Heterogeneous Graph
Representation Learning [78.49090351193269]
本稿では,WSI分析のために,異なる種類の核間の相互関係を利用する新しいグラフベースのフレームワークを提案する。
具体的には、WSI を各ノードに "nucleus-type" 属性と各エッジに類似した意味属性を持つ異種グラフとして定式化する。
我々のフレームワークは、様々なタスクに対してかなりのマージンで最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-07-09T14:43:40Z) - Multi-Scale Relational Graph Convolutional Network for Multiple Instance
Learning in Histopathology Images [2.6663738081163726]
マルチスケールグラフ畳み込みネットワーク(MS-RGCN)をマルチラーニング手法として導入する。
病理組織像パッチと近隣のパッチと他のスケールのパッチとの関係をグラフとしてモデル化する。
前立腺癌の病理組織像を実験的に検討し,パッチから抽出した特徴に基づいて拡大群を予測した。
論文 参考訳(メタデータ) (2022-12-17T02:26:42Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
我々は、Mine yOur owN Anatomy (MONA) と呼ばれる、新しい半教師付き2次元医用画像セグメンテーションフレームワークを紹介する。
まず、先行研究では、すべてのピクセルがモデルトレーニングに等しく重要であると論じており、我々はこの1つだけで意味のある解剖学的特徴を定義できないことを経験的に観察している。
第2に,医療画像を解剖学的特徴の集合に分解できるモデルを構築する。
論文 参考訳(メタデータ) (2022-09-27T15:50:31Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
時系列の進化的・マルチスケール相互作用をモデル化する方法を示す。
特に、まず、拡張畳み込みと協調して、スケール固有の相関を捉える階層グラフ構造を提供する。
最終的な予測を得るために上記のコンポーネントを統合するために、統合ニューラルネットワークが提供される。
論文 参考訳(メタデータ) (2022-06-28T08:11:12Z) - Omni-Seg+: A Scale-aware Dynamic Network for Pathological Image
Segmentation [13.182646724406291]
糸球体の断面領域は、管周囲の毛細血管の64倍の大きさである。
マルチオブジェクト(6つの組織型)とマルチスケール(5Xから40Xスケール)の画像セグメンテーションを実現する,スケール対応の動的ニューラルネットワークであるOmni-Seg+ネットワークを提案する。
論文 参考訳(メタデータ) (2022-06-27T21:09:55Z) - HeMI: Multi-view Embedding in Heterogeneous Graphs [8.87527266373087]
不均一グラフ(HG)の表現学習は、そのようなグラフの豊富な構造と意味を低次元空間に埋め込む。
本稿では,HGの構造的セマンティクス間の知識交換と発見に依存して,HG表現を学習する自己教師型手法を提案する。
提案手法は,全タスクにおいて1%,最大10%の効率で性能が向上し,競合手法の改善が図られている。
論文 参考訳(メタデータ) (2021-09-14T23:04:42Z) - Learning Multi-Granular Hypergraphs for Video-Based Person
Re-Identification [110.52328716130022]
ビデオベースの人物識別(re-ID)はコンピュータビジョンにおいて重要な研究課題である。
MGH(Multi-Granular Hypergraph)という新しいグラフベースのフレームワークを提案する。
MARSの90.0%のトップ-1精度はMGHを用いて達成され、最先端のスキームよりも優れていた。
論文 参考訳(メタデータ) (2021-04-30T11:20:02Z) - Heterogeneous Graph Neural Networks for Extractive Document
Summarization [101.17980994606836]
クロス文関係は、抽出文書要約における重要なステップである。
We present a graph-based neural network for extractive summarization (HeterSumGraph)
抽出文書要約のためのグラフベースニューラルネットワークに異なる種類のノードを導入する。
論文 参考訳(メタデータ) (2020-04-26T14:38:11Z) - Heterogeneous Graph Neural Networks for Malicious Account Detection [64.0046412312209]
GEMは、悪意のあるアカウントを検出するための、最初の異種グラフニューラルネットワークである。
我々は、デバイス集約とアクティビティ集約という2つの基本的な弱点に基づいて、異種アカウントデバイスグラフから差別的埋め込みを学習する。
実験により、我々のアプローチは、時間とともに競合する手法と比較して、常に有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2020-02-27T18:26:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。