Entanglement Signature of the Superradiant Quantum Phase Transition
- URL: http://arxiv.org/abs/2404.19373v1
- Date: Tue, 30 Apr 2024 09:05:41 GMT
- Title: Entanglement Signature of the Superradiant Quantum Phase Transition
- Authors: Arthur Vesperini, Matteo Cini, Roberto Franzosi,
- Abstract summary: Entanglement and quantum correlations between atoms are not usually considered key ingredients of the superradiant phase transition.
We consider the Tavis-Cummings model, a solvable system of two-levels atoms, coupled with a single-mode quantized electromagnetic field.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entanglement and quantum correlations between atoms are not usually considered key ingredients of the superradiant phase transition. Here we consider the Tavis-Cummings model, a solvable system of two-levels atoms, coupled with a single-mode quantized electromagnetic field. This system undergoes a superradiant phase transition, even in a finite-size framework, accompanied by a spontaneous symmetry breaking, and an infinite sequence of energy level crossings. We find approximated expressions for the ground state, its energy, and the position of the level crossings, valid in the limit of a very large number of photons with respect to that of the atoms. In that same limit, we find that the number of photons scales quadratically with the coupling strength, and linearly with the system size, providing a new insight into the superradiance phenomenon. Resorting to novel multipartite measures, we then demonstrate that this quantum phase transition is accompanied by a crossover in the quantum correlations and entanglement between the atoms (qubits). The latters therefore represent suited order parameters for this transition. Finally, we show that these properties of the quantum phase transition persist in the thermodynamic limit.
Related papers
- Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Quantum bistability in the hyperfine ground state of atoms [0.0]
We show that atoms in an optical cavity can manifest a first-order dissipative phase transition.
These states include hyperfine ground states of atoms and coherent states of electromagnetic field modes.
arXiv Detail & Related papers (2023-03-03T12:42:50Z) - Multipartite Entanglement in the Measurement-Induced Phase Transition of
the Quantum Ising Chain [77.34726150561087]
External monitoring of quantum many-body systems can give rise to a measurement-induced phase transition.
We show that this transition extends beyond bipartite correlations to multipartite entanglement.
arXiv Detail & Related papers (2023-02-13T15:54:11Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Predicting Critical Phases from Entanglement Dynamics in XXZ Alternating
Chain [0.0]
The quantum XXZ spin model with alternating bond strengths under magnetic field has a rich equilibrium phase diagram.
We show that the nearest neighbor bipartite and multipartite entanglement can detect quantum critical lines and phases in this model.
arXiv Detail & Related papers (2021-12-22T18:02:51Z) - Possibility of superradiant phase transitions in coupled two-level atoms [9.382891170863449]
We present the possibility of the quantum phase transition in the coupled two-level atoms in a cavity.
The bosonic coherent state technique has been adopted to locate the quantum critical point accurately in the finite-size system.
We predict the existence of the superadiant phase transition as the number of atoms increases, satisfying all the constraints imposed by the sum rule.
arXiv Detail & Related papers (2021-08-20T02:34:19Z) - Anharmonicity-induced excited-state quantum phase transition in the
symmetric phase of the two-dimensional limit of the vibron model [0.0]
An excited-state quantum phase transition might also stem from the lowering of the energy of the corresponding energy functional.
One such example occurs in the 2D limit of the vibron model, once an anharmonic term in the form of a bosonic number operator is added to the Hamiltonian.
In the present work, we characterize it in the symmetric, previously overlooked phase of the model making use of quantities such as the effective frequency, the expected value of the quantum number operator, the participation ratio, the density of states, and the quantum fidelity susceptibility.
arXiv Detail & Related papers (2021-06-21T12:31:17Z) - Superradiant Switching, Quantum Hysteresis, and Oscillations in a
Generalized Dicke Model [0.0]
A first-order phase transition to coexisting normal and superradiant phases is observed, corresponding with the emergence of switching dynamics.
We show that this phase coexistence gives rise to a loop also for the quantum mechanical system.
arXiv Detail & Related papers (2020-07-27T02:11:53Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.