Weighted Feedback-Based Quantum Algorithm for Excited States Calculation
- URL: http://arxiv.org/abs/2404.19386v2
- Date: Sun, 21 Jul 2024 10:22:58 GMT
- Title: Weighted Feedback-Based Quantum Algorithm for Excited States Calculation
- Authors: Salahuddin Abdul Rahman, Özkan Karabacak, Rafal Wisniewski,
- Abstract summary: We propose a novel weighted feedback-based quantum algorithm for excited state calculation.
We show that depending on how we design the weights and the feedback law, we can prepare the $p$th excited state or lowest energy states up to the $p$th excited state.
- Score: 0.6554326244334868
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Drawing inspiration from the Lyapunov control technique for quantum systems, feedback-based quantum algorithms have been proposed for calculating the ground states of Hamiltonians. In this work, we consider extending these algorithms to tackle calculating excited states. Inspired by the weighted subspace-search variational quantum eigensolver algorithm, we propose a novel weighted feedback-based quantum algorithm for excited state calculation. We show that depending on how we design the weights and the feedback law, we can prepare the $p$th excited state or lowest energy states up to the $p$th excited state. Through an application in quantum chemistry, we show the effectiveness of the proposed algorithm, evaluating its efficacy via numerical simulations.
Related papers
- Efficient charge-preserving excited state preparation with variational quantum algorithms [33.03471460050495]
We introduce a charge-preserving VQD (CPVQD) algorithm, designed to incorporate symmetry and the corresponding conserved charge into the VQD framework.
Results show applications in high-energy physics, nuclear physics, and quantum chemistry.
arXiv Detail & Related papers (2024-10-18T10:30:14Z) - Feedback-Based Quantum Algorithm for Excited States Calculation [0.6554326244334868]
We propose a new design methodology that combines the layer-wise construction of the quantum circuit in feedback-based quantum algorithms with a new feedback law based on a new Lyapunov function to assign the quantum circuit parameters.
We demonstrate the algorithm through an illustrative example and through an application in quantum chemistry.
arXiv Detail & Related papers (2024-04-06T12:51:17Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Feedback-based Quantum Algorithm Inspired by Counterdiabatic Driving [0.32985979395737786]
We propose a protocol that uses ideas from quantum Lyapunov control and the counterdiabatic driving protocol.
We apply our algorithm to prepare ground states in one-dimensional quantum Ising spin chains.
arXiv Detail & Related papers (2024-01-27T05:41:32Z) - Quantum state tomography with disentanglement algorithm [0.0]
We use variational quantum circuits to disentangle the quantum state to a product of computational zero states.
Inverse evolution of the zero states reconstructs the quantum state up to an overall phase.
Our method is universal and imposes no specific ansatz or constrain on the quantum state.
arXiv Detail & Related papers (2023-10-10T03:11:12Z) - Calculating the many-body density of states on a digital quantum
computer [58.720142291102135]
We implement a quantum algorithm to perform an estimation of the density of states on a digital quantum computer.
We use our algorithm to estimate the density of states of a non-integrable Hamiltonian on the Quantinuum H1-1 trapped ion chip for a controlled register of 18bits.
arXiv Detail & Related papers (2023-03-23T17:46:28Z) - Feedback-based quantum algorithms for ground state preparation [0.0]
Ground state properties of quantum many-body systems are a subject of interest across chemistry, materials science, and physics.
Variational quantum algorithms are one class of ground state algorithms that has received significant attention in recent years.
We develop formulations of feedback-based quantum algorithms for ground state preparation.
arXiv Detail & Related papers (2023-03-06T06:27:59Z) - Quantum Davidson Algorithm for Excited States [42.666709382892265]
We introduce the quantum Krylov subspace (QKS) method to address both ground and excited states.
By using the residues of eigenstates to expand the Krylov subspace, we formulate a compact subspace that aligns closely with the exact solutions.
Using quantum simulators, we employ the novel QDavidson algorithm to delve into the excited state properties of various systems.
arXiv Detail & Related papers (2022-04-22T15:03:03Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z) - Variational Quantum Algorithms for Steady States of Open Quantum Systems [2.740982822457262]
We propose a variational quantum algorithm to find the steady state of open quantum systems.
The fidelity between the optimal mixed state and the true steady state is over 99%.
This algorithm is derived from the natural idea of expressing mixed states with purification.
arXiv Detail & Related papers (2020-01-08T14:47:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.