Energy Cyber Attacks to Smart Healthcare Devices: A Testbed
- URL: http://arxiv.org/abs/2404.19418v2
- Date: Tue, 15 Oct 2024 07:53:56 GMT
- Title: Energy Cyber Attacks to Smart Healthcare Devices: A Testbed
- Authors: Zainab Alwaisi, Simone Soderi, Rocco De Nicola,
- Abstract summary: The rapid expansion of IoT technology has ushered in smart healthcare, smart devices, smart cities, and smart grids.
The security of IoT devices, particularly in healthcare, has become a major concern, with recent attacks revealing serious vulnerabilities.
This paper explores the impact of Distributed Denial of Service (DDoS) and Fake Access Points (F-APs) attacks on WiFi-enabled smart healthcare devices.
- Score: 1.515687944002438
- License:
- Abstract: The Internet of Things (IoT) has garnered significant interest in both research and industry due to its profound impact on human life. The rapid expansion of IoT technology has ushered in smart healthcare, smart devices, smart cities, and smart grids. However, the security of IoT devices, particularly in healthcare, has become a major concern, with recent attacks revealing serious vulnerabilities. In IoT networks, where connected devices are susceptible to resource-constraint attacks, such as energy consumption attacks, security is paramount. This paper explores the impact of Distributed Denial of Service (DDoS) and Fake Access Points (F-APs) attacks on WiFi-enabled smart healthcare devices. Specifically, it investigates how these attacks can disrupt service on victim devices and Access Points (APs), focusing on device connectivity and energy consumption during attacks. Key findings include identifying the attack rates of DDoS attacks that disrupt services and quantifying the energy consumption impact of Energy Consumption Distributed Denial of Service (EC-DDoS) and F-APs attacks on smart healthcare devices. The study highlights communication protocols, attack rates, payload sizes, and port states of victim devices as critical factors influencing energy consumption. These insights provide a comprehensive understanding of IoT device vulnerabilities in smart healthcare environments and lay the groundwork for future defense strategies.
Related papers
- Detection of Energy Consumption Cyber Attacks on Smart Devices [1.515687944002438]
This paper presents a lightweight technique for detecting energy consumption attacks on smart home devices by analyzing received packets.
It accounts for resource constraints and promptly alerts administrators upon detecting an attack.
arXiv Detail & Related papers (2024-04-30T10:29:25Z) - Machine Learning for Healthcare-IoT Security: A Review and Risk Mitigation [4.499833362998488]
This paper reviews the fundamentals of healthcare IoT, its privacy, and data security challenges associated with machine learning and H-IoT devices.
The paper further emphasizes the importance of monitoring healthcare IoT layers such as perception, network, cloud, and application.
arXiv Detail & Related papers (2024-01-17T10:55:26Z) - Towards Evaluating the Security of Wearable Devices in the Internet of Medical Things [0.0]
The Internet of Medical Things (IoMT) offers a promising solution to improve patient health and reduce human error.
Wearable smart infusion pumps that accurately administer medication and integrate with electronic health records are an example of technology that can improve healthcare.
However, as the number of connected medical devices increases, the risk of cyber threats also increases.
arXiv Detail & Related papers (2023-12-13T14:12:52Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
This paper provides a classification of IoT malware.
Major targets and used exploits for attacks are identified and referred to the specific malware.
The majority of current IoT attacks continue to be of comparably low effort and level of sophistication and could be mitigated by existing technical measures.
arXiv Detail & Related papers (2023-12-01T16:10:43Z) - Progression and Challenges of IoT in Healthcare: A Short Review [0.0]
The burgeoning field of smart healthcare is poised to generate substantial revenue in the foreseeable future.
Numerous nations have strategically deployed the Internet of Medical Things (IoMT) alongside other measures to combat the propagation of COVID-19.
The rapid and extensive adoption of IoMT worldwide has magnified issues related to security and privacy.
arXiv Detail & Related papers (2023-11-11T08:38:04Z) - Demand-Side Threats to Power Grid Operations from IoT-Enabled Edge [6.437501851914223]
Growing adoption of Internet-of-Things (IoT)-enabled energy smart appliances (ESAs) at the consumer end, is seen as key to enabling demand-side response (DSR) services.
These smart appliances are often poorly engineered from a security point of view and present a new threat to power grid operations.
Unlike utility-side and SCADA assets, ESAs are not monitored continuously due to their large numbers and the lack of extensive monitoring infrastructure at consumer sites.
arXiv Detail & Related papers (2023-10-28T20:56:43Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
arXiv Detail & Related papers (2023-09-14T05:43:36Z) - AI-Empowered Data Offloading in MEC-Enabled IoV Networks [40.75165195026413]
This article surveys research studies that use AI as part of the data offloading process, categorized based on four main issues: reliability, security, energy management, and service seller profit.
Various challenges to the process of offloading data in a MEC-enabled IoV network have emerged, such as offloading reliability in highly mobile environments, security for users within the same network, and energy management to keep users from being disincentivized to participate in the network.
arXiv Detail & Related papers (2022-03-31T09:31:53Z) - Learning, Computing, and Trustworthiness in Intelligent IoT
Environments: Performance-Energy Tradeoffs [62.91362897985057]
An Intelligent IoT Environment (iIoTe) is comprised of heterogeneous devices that can collaboratively execute semi-autonomous IoT applications.
This paper provides a state-of-the-art overview of these technologies and illustrates their functionality and performance, with special attention to the tradeoff among resources, latency, privacy and energy consumption.
arXiv Detail & Related papers (2021-10-04T19:41:42Z) - Smart Home, security concerns of IoT [91.3755431537592]
The IoT (Internet of Things) has become widely popular in the domestic environments.
People are renewing their homes into smart homes; however, the privacy concerns of owning many Internet connected devices with always-on environmental sensors remain insufficiently addressed.
Default and weak passwords, cheap materials and hardware, and unencrypted communication are identified as the principal threats and vulnerabilities of IoT devices.
arXiv Detail & Related papers (2020-07-06T10:36:11Z) - Challenges and Countermeasures for Adversarial Attacks on Deep
Reinforcement Learning [48.49658986576776]
Deep Reinforcement Learning (DRL) has numerous applications in the real world thanks to its outstanding ability in adapting to the surrounding environments.
Despite its great advantages, DRL is susceptible to adversarial attacks, which precludes its use in real-life critical systems and applications.
This paper presents emerging attacks in DRL-based systems and the potential countermeasures to defend against these attacks.
arXiv Detail & Related papers (2020-01-27T10:53:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.