Cybersecurity and Frequent Cyber Attacks on IoT Devices in Healthcare: Issues and Solutions
- URL: http://arxiv.org/abs/2501.11250v1
- Date: Mon, 20 Jan 2025 03:29:07 GMT
- Title: Cybersecurity and Frequent Cyber Attacks on IoT Devices in Healthcare: Issues and Solutions
- Authors: Zag ElSayed, Ahmed Abdelgawad, Nelly Elsayed,
- Abstract summary: Internet of Things (IoT) devices in healthcare have revolutionized patient care, offering improved monitoring, diagnostics, and treatment.
However, the proliferation of these devices has also introduced significant cybersecurity challenges.
This paper reviews the current landscape of cybersecurity threats targeting IoT devices in healthcare, discusses the underlying issues contributing to these vulnerabilities, and explores potential solutions.
- Score: 0.0
- License:
- Abstract: Integrating Internet of Things (IoT) devices in healthcare has revolutionized patient care, offering improved monitoring, diagnostics, and treatment. However, the proliferation of these devices has also introduced significant cybersecurity challenges. This paper reviews the current landscape of cybersecurity threats targeting IoT devices in healthcare, discusses the underlying issues contributing to these vulnerabilities, and explores potential solutions. Additionally, this study offers solutions and suggestions for researchers, agencies, and security specialists to overcome these IoT in healthcare cybersecurity vulnerabilities. A comprehensive literature survey highlights the nature and frequency of cyber attacks, their impact on healthcare systems, and emerging strategies to mitigate these risks.
Related papers
- A Review on the Security Vulnerabilities of the IoMT against Malware Attacks and DDoS [0.0]
The Internet of Medical Things (IoMT) has transformed the healthcare industry by connecting medical devices in monitoring treatment outcomes of patients.
This literature review examines the vulnerabilities of IoMT devices, focusing on critical threats and exploring mitigation strategies.
arXiv Detail & Related papers (2025-01-13T21:29:06Z) - Open Problems in Machine Unlearning for AI Safety [61.43515658834902]
Machine unlearning -- the ability to selectively forget or suppress specific types of knowledge -- has shown promise for privacy and data removal tasks.
In this paper, we identify key limitations that prevent unlearning from serving as a comprehensive solution for AI safety.
arXiv Detail & Related papers (2025-01-09T03:59:10Z) - Quantum Threat in Healthcare IoT: Challenges and Mitigation Strategies [2.1842941116221826]
The Internet of Things (IoT) has transformed healthcare, facilitating remote patient monitoring, enhanced medication adherence, and chronic disease management.
This chapter examines the quantum threat to healthcare IoT security, highlighting the potential impacts of compromised encryption.
It introduces post-quantum cryptography (PQC) and quantum-resistant techniques like quantum key distribution (QKD)
arXiv Detail & Related papers (2024-12-08T11:48:14Z) - Countering Autonomous Cyber Threats [40.00865970939829]
Foundation Models present dual-use concerns broadly and within the cyber domain specifically.
Recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations.
This work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks.
arXiv Detail & Related papers (2024-10-23T22:46:44Z) - SoK: Security and Privacy Risks of Medical AI [14.592921477833848]
The integration of technology and healthcare has ushered in a new era where software systems, powered by artificial intelligence and machine learning, have become essential components of medical products and services.
This paper explores the security and privacy threats posed by AI/ML applications in healthcare.
arXiv Detail & Related papers (2024-09-11T16:59:58Z) - Navigating the road to automotive cybersecurity compliance [39.79758414095764]
The automotive industry is compelled to adopt robust cybersecurity measures to safeguard both vehicles and data against potential threats.
The future of automotive cybersecurity lies in the continuous development of advanced protective measures and collaborative efforts among all stakeholders.
arXiv Detail & Related papers (2024-06-29T16:07:48Z) - Machine Learning for Healthcare-IoT Security: A Review and Risk Mitigation [4.499833362998488]
This paper reviews the fundamentals of healthcare IoT, its privacy, and data security challenges associated with machine learning and H-IoT devices.
The paper further emphasizes the importance of monitoring healthcare IoT layers such as perception, network, cloud, and application.
arXiv Detail & Related papers (2024-01-17T10:55:26Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
This paper provides a classification of IoT malware.
Major targets and used exploits for attacks are identified and referred to the specific malware.
The majority of current IoT attacks continue to be of comparably low effort and level of sophistication and could be mitigated by existing technical measures.
arXiv Detail & Related papers (2023-12-01T16:10:43Z) - White paper on cybersecurity in the healthcare sector. The HEIR solution [1.3717071154980571]
Patient data, including medical records and financial information, are at risk, potentially leading to identity theft and patient safety concerns.
The HEIR project offers a comprehensive cybersecurity approach, promoting security features from various regulatory frameworks.
These measures aim to enhance digital health security and protect sensitive patient data while facilitating secure data access and privacy-aware techniques.
arXiv Detail & Related papers (2023-10-16T07:27:57Z) - When to Trust AI: Advances and Challenges for Certification of Neural
Networks [26.890905486708117]
Early adoption of AI technology for real-world applications has not been without problems.
This paper provides an overview of techniques that have been developed to ensure safety of AI decisions.
arXiv Detail & Related papers (2023-09-20T10:31:09Z) - Edge Intelligence for Empowering IoT-based Healthcare Systems [42.909808437026136]
This article highlights the benefits of edge intelligent technology, along with AI in smart healthcare systems.
A novel smart healthcare model is proposed to boost the utilization of AI and edge technology in smart healthcare systems.
arXiv Detail & Related papers (2021-03-22T19:35:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.