論文の概要: Safe Training with Sensitive In-domain Data: Leveraging Data Fragmentation To Mitigate Linkage Attacks
- arxiv url: http://arxiv.org/abs/2404.19486v1
- Date: Tue, 30 Apr 2024 12:09:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 14:25:13.208128
- Title: Safe Training with Sensitive In-domain Data: Leveraging Data Fragmentation To Mitigate Linkage Attacks
- Title(参考訳): 敏感なドメイン内データによる安全なトレーニング: リンク攻撃の軽減にデータフラグメンテーションを活用する
- Authors: Mariia Ignashina, Julia Ive,
- Abstract要約: 現在のテキスト生成モデルは、機密情報を含む可能性がある実際のデータを使って訓練される。
本稿では,断片化されたデータをランダムにグループ化されたドメイン固有の短いフレーズの形で見る,より安全な代替手法を提案する。
- 参考スコア(独自算出の注目度): 2.8186733524862158
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current text generation models are trained using real data which can potentially contain sensitive information, such as confidential patient information and the like. Under certain conditions output of the training data which they have memorised can be triggered, exposing sensitive data. To mitigate against this risk we propose a safer alternative which sees fragmented data in the form of domain-specific short phrases randomly grouped together shared instead of full texts. Thus, text fragments that could re-identify an individual cannot be reproduced by the model in one sequence, giving significant protection against linkage attacks. We fine-tune several state-of-the-art LLMs using meaningful syntactic chunks to explore their utility. In particular, we fine-tune BERT-based models to predict two cardiovascular diagnoses. Our results demonstrate the capacity of LLMs to benefit from the pre-trained knowledge and deliver classification results when fine-tuned with fragmented data comparable to fine-tuning with full training data.
- Abstract(参考訳): 現在のテキスト生成モデルは、秘密の患者情報などの機密情報を含む可能性がある実データを用いて訓練されている。
記憶したトレーニングデータの特定の条件下では、センシティブなデータを露出してトリガーすることができる。
このリスクを緩和するために、完全テキストの代わりにランダムにグループ化されたドメイン固有の短いフレーズの形で断片化されたデータを見る安全な代替案を提案する。
したがって、個人を再識別できるテキストフラグメントは、1つのシーケンスでモデルによって複製できないため、リンク攻撃に対してかなりの保護を与える。
我々は、意味のある構文的チャンクを用いて、最先端のLLMをいくつか微調整し、その有用性を探求する。
特に、BERTモデルを用いて2つの心臓血管診断を予測した。
本研究は,LLMが事前学習した知識の恩恵を受ける能力を示し,完全学習データに匹敵する断片化データを用いて微調整を行った場合の分類結果を提供する。
関連論文リスト
- Towards a Theoretical Understanding of Memorization in Diffusion Models [76.85077961718875]
拡散確率モデル(DPM)は、生成人工知能(GenAI)の主流モデルとして採用されている。
モデル収束を前提とした条件付きおよび非条件付きDPMにおける記憶の理論的理解を提供する。
本研究では、生成されたデータに基づいて訓練された時間依存型分類器を代理条件として利用し、無条件DPMからトレーニングデータを抽出する、textbfSurrogate condItional Data extract (SIDE) という新しいデータ抽出手法を提案する。
論文 参考訳(メタデータ) (2024-10-03T13:17:06Z) - Unlearnable Examples Detection via Iterative Filtering [84.59070204221366]
ディープニューラルネットワークは、データ中毒攻撃に弱いことが証明されている。
混合データセットから有毒なサンプルを検出することは極めて有益であり、困難である。
UE識別のための反復フィルタリング手法を提案する。
論文 参考訳(メタデータ) (2024-08-15T13:26:13Z) - ReCaLL: Membership Inference via Relative Conditional Log-Likelihoods [56.073335779595475]
ReCaLL (Relative Conditional Log-Likelihood) という新しいメンバーシップ推論攻撃(MIA)を提案する。
ReCaLLは、ターゲットデータポイントを非メンバーコンテキストでプレフィックスする場合、条件付きログライクな状態の相対的変化を調べる。
我々は総合的な実験を行い、ReCaLLがWikiMIAデータセット上で最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-06-23T00:23:13Z) - Beyond Model Collapse: Scaling Up with Synthesized Data Requires Verification [11.6055501181235]
モデル崩壊防止のための合成データに対する検証手法について検討する。
検証器は、たとえ不完全なものであっても、モデル崩壊を防ぐために実際に活用できることが示される。
論文 参考訳(メタデータ) (2024-06-11T17:46:16Z) - Alpaca against Vicuna: Using LLMs to Uncover Memorization of LLMs [61.04246774006429]
本稿では,攻撃者によるLSMエージェントを用いたブラックボックスプロンプト最適化手法を提案する。
ベースラインプレフィックス・サフィックス測定と比較すると,命令ベースのプロンプトは,トレーニングデータと23.7%のオーバラップで出力を生成する。
以上の結果から,命令調整モデルでは,ベースモデルと同等に事前学習データを公開することが可能であり,他のLSMが提案する命令を用いることで,新たな自動攻撃の道を開くことが可能であることが示唆された。
論文 参考訳(メタデータ) (2024-03-05T19:32:01Z) - Amplifying Training Data Exposure through Fine-Tuning with Pseudo-Labeled Memberships [3.544065185401289]
ニューラルネットワークモデル(LM)は、データ記憶によるデータ抽出攻撃のトレーニングに脆弱である。
本稿では,攻撃者がトレーニング済みのLMを微調整して,元のトレーニングデータの露出を増幅する,新たな攻撃シナリオを提案する。
1B以上のパラメータを持つLMは、トレーニングデータ露出の4倍から8倍の増大を示す。
論文 参考訳(メタデータ) (2024-02-19T14:52:50Z) - From Zero to Hero: Detecting Leaked Data through Synthetic Data Injection and Model Querying [10.919336198760808]
分類モデルの学習に使用される漏洩データを検出する新しい手法を提案する。
textscLDSSは、クラス分散の局所的なシフトによって特徴付けられる、少量の合成データを所有者のデータセットに注入する。
これにより、モデルクエリ単独で、リークデータに基づいてトレーニングされたモデルの効果的な識別が可能になる。
論文 参考訳(メタデータ) (2023-10-06T10:36:28Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
コンテキストプライバシ保護言語モデル(PrivacyMind)を紹介する。
我々の研究はモデル設計に関する理論的分析を提供し、様々な手法をベンチマークする。
特に、肯定的な例と否定的な例の両方による命令チューニングは、有望な方法である。
論文 参考訳(メタデータ) (2023-10-03T22:37:01Z) - Recovering from Privacy-Preserving Masking with Large Language Models [14.828717714653779]
マスク付きトークンの代わりに大きな言語モデル(LLM)を提案する。
難読化コーパスでトレーニングしたモデルが,元のデータでトレーニングしたモデルと同等の性能を発揮することを示す。
論文 参考訳(メタデータ) (2023-09-12T16:39:41Z) - Reconstructing Training Data from Model Gradient, Provably [68.21082086264555]
ランダムに選択されたパラメータ値で1つの勾配クエリからトレーニングサンプルを再構成する。
センシティブなトレーニングデータを示す証明可能な攻撃として、われわれの発見はプライバシーに対する深刻な脅威を示唆している。
論文 参考訳(メタデータ) (2022-12-07T15:32:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。