論文の概要: A Smartphone-Based Method for Assessing Tomato Nutrient Status through Trichome Density Measurement
- arxiv url: http://arxiv.org/abs/2404.19513v2
- Date: Tue, 27 Aug 2024 10:50:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 19:19:38.431606
- Title: A Smartphone-Based Method for Assessing Tomato Nutrient Status through Trichome Density Measurement
- Title(参考訳): トリコーム密度測定によるトマトの栄養状態評価のためのスマートフォンによる方法
- Authors: Sho Ueda, Xujun Ye,
- Abstract要約: トマトにおける肥料によるストレスの早期検出は, タイムリーな作物管理介入と収量最適化に不可欠である。
本研究は,スマートフォンを用いた若葉植物表面のトリコム伸長性毛髪状構造の密度を定量化するための新しい非侵襲的手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early detection of fertilizer-induced stress in tomato plants is crucial for timely crop management interventions and yield optimization. Conventional optical methods detect fertilizer stress in young leaves with difficulty. This study proposes a novel, noninvasive technique for quantifying the density of trichomes-elongated hair-like structures found on plant surfaces-on young leaves using a smartphone. This method exhibits superior detection latency, enabling earlier and more accurate identification of fertilizer stress in tomato plants. Our approach combines augmented reality technology and image processing algorithms to analyze smartphone images of a specialized measurement paper. This measurement paper is applied to a tomato leaf to transfer trichomes onto its adhesive surface. The captured images are then processed through a pipeline involving region of interest extraction, perspective transformation, and illumination correction. Trichome detection and spatial distribution analysis of these preprocessed images yield a robust density metric. We validated our method through experiments on hydroponically grown tomatoes under varying fertilizer concentrations. Using leave-one-out cross-validation (LOOCV), our model achieves a mean area under the precision-recall curve of 0.824 and a receiver operating characteristic curve of 0.641 for predicting additional fertilization needs. Based on LOOCV, quantitative analysis revealed a strong relationship between trichome density and explanatory variables, including nitrate ion concentration, explaining 62.48% of the variation ($R^2 = 0.625$). The predicted and actual trichome densities were strongly correlated ($r = 0.794$). This straightforward and cost-effective method overcomes the limitations of traditional techniques, demonstrating the potential of using smartphones for practical plant nutrition diagnosis.
- Abstract(参考訳): トマトにおける肥料によるストレスの早期検出は, タイムリーな作物管理介入と収量最適化に不可欠である。
従来の光学的手法は、若い葉の肥料ストレスを困難に検出する。
本研究は,スマートフォンを用いた若葉植物表面のトリコム伸長性毛髪状構造の密度を定量化するための新しい非侵襲的手法を提案する。
本手法は, 検出遅延が優れ, トマトの肥料ストレスの早期かつより正確な同定が可能となる。
提案手法は,拡張現実技術と画像処理アルゴリズムを組み合わせて,特殊な計測用紙のスマートフォン画像の解析を行う。
この測定用紙はトマト葉に塗布され、トリコマーを接着剤表面に転写する。
キャプチャされた画像は、関心領域抽出、視点変換、照明補正を含むパイプラインを通して処理される。
これらの前処理画像のトリコーム検出と空間分布解析により,ロバストな密度測定値が得られる。
肥料濃度の異なる水耕栽培トマトの実験により,本法の有効性を検証した。
LOOCV (Left-one-out Cross-validation) を用いて,0.641の受信特性曲線と0.824の精度リコール曲線の平均値を求める。
LOOCVを用いた定量分析の結果, 硝酸イオン濃度を含むトリトリホーム密度と説明変数の関係が強く, 変動の62.48%(R^2 = 0.625$)が説明できた。
予測と実際の三重項密度は強く相関していた(r = 0.794$)。
この単純で費用対効果の高い方法は、従来の技術の限界を克服し、植物栄養診断にスマートフォンを使うことの可能性を示している。
関連論文リスト
- A Novel Feature Extraction Model for the Detection of Plant Disease from Leaf Images in Low Computational Devices [2.1990652930491854]
提案手法は,葉のイメージから頑健で識別可能な特徴を抽出するために,様々なタイプのディープラーニング技術を統合する。
このデータセットには、10種類のトマト病と1種類の健康な葉から1万枚の葉の写真が含まれています。
AlexNetの精度スコアは87%で、高速で軽量であり、組み込みシステムでの使用に適している。
論文 参考訳(メタデータ) (2024-10-01T19:32:45Z) - Enhancing Plant Disease Detection: A Novel CNN-Based Approach with Tensor Subspace Learning and HOWSVD-MD [3.285994579445155]
本稿では,トマト葉病の検出・分類のための最先端技術を紹介する。
本稿では,高次白色特異値分解(Higher-Order Whitened Singular Value Decomposition)と呼ばれる部分空間学習領域における高度なアプローチを提案する。
このイノベーティブな手法の有効性は、2つの異なるデータセットに関する包括的な実験を通じて厳密に検証された。
論文 参考訳(メタデータ) (2024-05-30T13:46:56Z) - Early and Accurate Detection of Tomato Leaf Diseases Using TomFormer [0.3169023552218211]
本稿ではトマト葉病検出のためのトランスフォーマーモデルTomFormerを紹介する。
本稿では,視覚変換器と畳み込みニューラルネットワークを組み合わせた融合モデルを用いて,トマト葉病の検出手法を提案する。
論文 参考訳(メタデータ) (2023-12-26T20:47:23Z) - Evaluation of the potential of Near Infrared Hyperspectral Imaging for
monitoring the invasive brown marmorated stink bug [53.682955739083056]
BMSB(Halyomorpha halys)は、数種の作物を害する世界的重要性の害虫である。
本研究は、BMSB検体を検出する技術として、NIR-HSI(Near Infrared Hyperspectral Imaging)を実験室レベルで予備評価する。
論文 参考訳(メタデータ) (2023-01-19T11:37:20Z) - Generative models-based data labeling for deep networks regression:
application to seed maturity estimation from UAV multispectral images [3.6868861317674524]
種子の成熟度モニタリングは、気候変動とより制限的な慣行による農業における課題の増加である。
従来の手法は、フィールドでの限られたサンプリングと実験室での分析に基づいている。
マルチスペクトルUAV画像を用いたパセリ種子の成熟度推定手法の提案と,自動ラベリングのための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-08-09T09:06:51Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z) - Automated Pest Detection with DNN on the Edge for Precision Agriculture [0.0]
本稿では,機械学習(ML)機能により強化された組込みシステムについて,果樹園内での害虫感染の連続検出を確実にする。
3つの異なるMLアルゴリズムがトレーニングされ、デプロイされ、プラットフォームの能力を強調している。
その結果,農夫の介入なしに無期限に害虫感染処理を自動化できることが示唆された。
論文 参考訳(メタデータ) (2021-08-01T10:17:48Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
本稿では, 深層ニューラルネットワークを用いたジャガイモの空中画像解析手法を提案する。
主な目的は、植物レベルでの健康作物とストレス作物の自動空間認識を実証することである。
実験により、フィールド画像中の健康植物とストレス植物を識別し、平均Dice係数0.74を達成できることを示した。
論文 参考訳(メタデータ) (2021-06-14T21:57:40Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
我々は,機械モデリングと衛星データ利用の並列化を活用し,作物生産性の高度モニタリングを行う。
本モデルでは, 地域情報を使用しなくても, 各種C3作物の種類, 環境条件の総合的生産性を推定することに成功した。
これは、現在の地球観測クラウドコンピューティングプラットフォームの助けを借りて、新しい衛星センサーから作物の生産性をグローバルにマップする可能性を強調しています。
論文 参考訳(メタデータ) (2020-12-07T16:23:13Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。