論文の概要: A Smartphone-Based Method for Assessing Tomato Nutrient Status through Trichome Density Measurement
- arxiv url: http://arxiv.org/abs/2404.19513v3
- Date: Thu, 14 Nov 2024 09:40:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:22:09.724834
- Title: A Smartphone-Based Method for Assessing Tomato Nutrient Status through Trichome Density Measurement
- Title(参考訳): トリコーム密度測定によるトマトの栄養状態評価のためのスマートフォンによる方法
- Authors: Sho Ueda, Xujun Ye,
- Abstract要約: 本研究は,若葉におけるトリホーム密度を,検出遅延の優れたスマートフォンを用いた定量化手法を提案する。
堅牢な自動パイプラインは、領域抽出、視点変換、照明補正を通じてこれらの画像を処理し、トリプルホーム密度を正確に定量化する。
この革新的なアプローチは、スマートフォンを植物栄養評価のための正確な診断ツールに変え、精度の高い農業のための実用的で費用対効果の高いソリューションを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Early detection of fertilizer-induced stress in tomato plants is crucial for optimizing crop yield through timely management interventions. While conventional optical methods struggle to detect fertilizer stress in young leaves, these leaves contain valuable diagnostic information through their microscopic hair-like structures, particularly trichomes, which existing approaches have overlooked. This study introduces a smartphone-based noninvasive technique that leverages mobile computing and digital imaging capabilities to quantify trichome density on young leaves with superior detection latency. Our method uniquely combines augmented reality technology with image processing algorithms to analyze trichomes transferred onto specialized measurement paper. A robust automated pipeline processes these images through region extraction, perspective transformation, and illumination correction to precisely quantify trichome density. Validation experiments on hydroponically grown tomatoes under varying fertilizer conditions demonstrated the method's effectiveness. Leave-one-out cross-validation revealed strong predictive performance with the area under the precision-recall curve (PR-AUC: 0.82) and area under the receiver operating characteristic curve (ROC-AUC: 0.64), while the predicted and observed trichome densities exhibited high correlation ($r = 0.79$). This innovative approach transforms smartphones into precise diagnostic tools for plant nutrition assessment, offering a practical, cost-effective solution for precision agriculture.
- Abstract(参考訳): トマトにおける肥料によるストレスの早期検出は、タイムリーな管理介入による収穫量の最適化に不可欠である。
従来の光学的手法では、若い葉の肥料ストレスを検出するのに苦労するが、これらの葉は、顕微鏡的な毛髪のような構造、特に既存のアプローチが見落としているトリコムを通して、貴重な診断情報を含んでいる。
本研究では,モバイルコンピューティングとデジタルイメージング機能を活用して,若葉におけるトリホーム密度の定量化を行うスマートフォンベースの非侵襲的手法を提案する。
本手法は,拡張現実技術と画像処理アルゴリズムを一意に組み合わせて,特殊な計測用紙に転送されたトリコムを解析する。
堅牢な自動パイプラインは、領域抽出、視点変換、照明補正を通じてこれらの画像を処理し、トリプルホーム密度を正確に定量化する。
肥料条件の異なる水耕栽培トマトのバリデーション実験により, 本法の有効性が示された。
左ワンアウトクロスバリデーションでは, 高精度リコール曲線 (PR-AUC: 0.82) と受信機動作特性曲線 (ROC-AUC: 0.64) の面積との相関が強く, 予測および観測された三重項密度は高い相関(r= 0.79$)を示した。
この革新的なアプローチは、スマートフォンを植物栄養評価のための正確な診断ツールに変え、精度の高い農業のための実用的で費用対効果の高いソリューションを提供する。
関連論文リスト
- A Novel Feature Extraction Model for the Detection of Plant Disease from Leaf Images in Low Computational Devices [2.1990652930491854]
提案手法は,葉のイメージから頑健で識別可能な特徴を抽出するために,様々なタイプのディープラーニング技術を統合する。
このデータセットには、10種類のトマト病と1種類の健康な葉から1万枚の葉の写真が含まれています。
AlexNetの精度スコアは87%で、高速で軽量であり、組み込みシステムでの使用に適している。
論文 参考訳(メタデータ) (2024-10-01T19:32:45Z) - Diffusion Facial Forgery Detection [56.69763252655695]
本稿では,顔に焦点をあてた拡散生成画像を対象とした包括的データセットであるDiFFを紹介する。
人体実験といくつかの代表的な偽造検出手法を用いて,DiFFデータセットの広範な実験を行った。
その結果、人間の観察者と自動検出者の2値検出精度は30%以下であることが判明した。
論文 参考訳(メタデータ) (2024-01-29T03:20:19Z) - Early and Accurate Detection of Tomato Leaf Diseases Using TomFormer [0.3169023552218211]
本稿ではトマト葉病検出のためのトランスフォーマーモデルTomFormerを紹介する。
本稿では,視覚変換器と畳み込みニューラルネットワークを組み合わせた融合モデルを用いて,トマト葉病の検出手法を提案する。
論文 参考訳(メタデータ) (2023-12-26T20:47:23Z) - PlantPlotGAN: A Physics-Informed Generative Adversarial Network for
Plant Disease Prediction [2.7409168462107347]
リアルな植生指標を持つ合成多スペクトルプロット画像を作成することができる物理インフォームド・ジェネレーティブ・モデルであるPlanetPlotGANを提案する。
その結果, PlantPlotGANから生成された合成画像はFr'echet開始距離に関して最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-10-27T16:56:28Z) - Look how they have grown: Non-destructive Leaf Detection and Size
Estimation of Tomato Plants for 3D Growth Monitoring [4.303287713669109]
本稿では,非破壊画像に基づく自動計測システムについて述べる。
Zividの3Dカメラで得られた2Dと3Dのデータを使って、トマトの3D仮想表現(デジタル双生児)を生成する。
実生トマトの総合的な試験を通じて, プラットフォームの性能を測定した。
論文 参考訳(メタデータ) (2023-04-07T12:16:10Z) - Evaluation of the potential of Near Infrared Hyperspectral Imaging for
monitoring the invasive brown marmorated stink bug [53.682955739083056]
BMSB(Halyomorpha halys)は、数種の作物を害する世界的重要性の害虫である。
本研究は、BMSB検体を検出する技術として、NIR-HSI(Near Infrared Hyperspectral Imaging)を実験室レベルで予備評価する。
論文 参考訳(メタデータ) (2023-01-19T11:37:20Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
本研究では,ブドウの葉のイメージを意味的にセグメント化するためにDeep Learning法を用いて,葉の表現型自動検出システムを開発した。
私たちの研究は、成長や開発のような動的な特性を捉え定量化できる植物ライフサイクルのモニタリングに寄与します。
論文 参考訳(メタデータ) (2022-10-24T14:37:09Z) - Generative models-based data labeling for deep networks regression:
application to seed maturity estimation from UAV multispectral images [3.6868861317674524]
種子の成熟度モニタリングは、気候変動とより制限的な慣行による農業における課題の増加である。
従来の手法は、フィールドでの限られたサンプリングと実験室での分析に基づいている。
マルチスペクトルUAV画像を用いたパセリ種子の成熟度推定手法の提案と,自動ラベリングのための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-08-09T09:06:51Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
本研究は, ブドウ畑の収量推定に深層学習と併用した近位画像の応用を実証する。
オブジェクト検出、CNN回帰、トランスフォーマーモデルという3つのモデルアーキテクチャがテストされた。
本研究は,ブドウの収量予測における近位画像と深層学習の適用性を示した。
論文 参考訳(メタデータ) (2022-08-04T01:34:46Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
本稿では, 深層ニューラルネットワークを用いたジャガイモの空中画像解析手法を提案する。
主な目的は、植物レベルでの健康作物とストレス作物の自動空間認識を実証することである。
実験により、フィールド画像中の健康植物とストレス植物を識別し、平均Dice係数0.74を達成できることを示した。
論文 参考訳(メタデータ) (2021-06-14T21:57:40Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
我々は,機械モデリングと衛星データ利用の並列化を活用し,作物生産性の高度モニタリングを行う。
本モデルでは, 地域情報を使用しなくても, 各種C3作物の種類, 環境条件の総合的生産性を推定することに成功した。
これは、現在の地球観測クラウドコンピューティングプラットフォームの助けを借りて、新しい衛星センサーから作物の生産性をグローバルにマップする可能性を強調しています。
論文 参考訳(メタデータ) (2020-12-07T16:23:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。