MGCBS: An Optimal and Efficient Algorithm for Solving Multi-Goal Multi-Agent Path Finding Problem
- URL: http://arxiv.org/abs/2404.19518v1
- Date: Tue, 30 Apr 2024 12:49:54 GMT
- Title: MGCBS: An Optimal and Efficient Algorithm for Solving Multi-Goal Multi-Agent Path Finding Problem
- Authors: Mingkai Tang, Yuanhang Li, Hongji Liu, Yingbing Chen, Ming Liu, Lujia Wang,
- Abstract summary: The MG-MAPF problem requires each agent to visit pre-assigned multiple goal points at least once without conflict.
We propose the Multi-Goal Conflict-Based Search (MGCBS), which is based on Decoupling the goal Safe interval visiting order search and the Single-agent pathfinding.
Our method can consistently obtain optimal results and execute up to 7 times faster than the state-of-the-art method in our evaluation.
- Score: 5.580214316179672
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the expansion of the scale of robotics applications, the multi-goal multi-agent pathfinding (MG-MAPF) problem began to gain widespread attention. This problem requires each agent to visit pre-assigned multiple goal points at least once without conflict. Some previous methods have been proposed to solve the MG-MAPF problem based on Decoupling the goal Vertex visiting order search and the Single-agent pathfinding (DVS). However, this paper demonstrates that the methods based on DVS cannot always obtain the optimal solution. To obtain the optimal result, we propose the Multi-Goal Conflict-Based Search (MGCBS), which is based on Decoupling the goal Safe interval visiting order search and the Single-agent pathfinding (DSS). Additionally, we present the Time-Interval-Space Forest (TIS Forest) to enhance the efficiency of MGCBS by maintaining the shortest paths from any start point at any start time step to each safe interval at the goal points. The experiment demonstrates that our method can consistently obtain optimal results and execute up to 7 times faster than the state-of-the-art method in our evaluation.
Related papers
- Training Greedy Policy for Proposal Batch Selection in Expensive Multi-Objective Combinatorial Optimization [52.80408805368928]
We introduce a novel greedy-style subset selection algorithm for batch acquisition.
Our experiments on the red fluorescent proteins show that our proposed method achieves the baseline performance in 1.69x fewer queries.
arXiv Detail & Related papers (2024-06-21T05:57:08Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.
We focus on the case of linear utility functions parameterised by weight vectors w.
We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - Optimal and Bounded Suboptimal Any-Angle Multi-agent Pathfinding [13.296796764344169]
We present the first optimal any-angle multi-agent pathfinding algorithm.
Our planner is based on the Continuous Conflict-based Search (CCBS) algorithm and an optimal any-angle variant of the Safe Interval Path Planning (TO-AA-SIPP)
We adapt two techniques from classical MAPF to the any-angle setting, namely Disjoint Splitting and Multi-Constraints.
arXiv Detail & Related papers (2024-04-25T07:41:47Z) - Scalable Mechanism Design for Multi-Agent Path Finding [87.40027406028425]
Multi-Agent Path Finding (MAPF) involves determining paths for multiple agents to travel simultaneously and collision-free through a shared area toward given goal locations.
Finding an optimal solution is often computationally infeasible, making the use of approximate, suboptimal algorithms essential.
We introduce the problem of scalable mechanism design for MAPF and propose three strategyproof mechanisms, two of which even use approximate MAPF algorithms.
arXiv Detail & Related papers (2024-01-30T14:26:04Z) - Decentralized Monte Carlo Tree Search for Partially Observable
Multi-agent Pathfinding [49.730902939565986]
Multi-Agent Pathfinding problem involves finding a set of conflict-free paths for a group of agents confined to a graph.
In this study, we focus on the decentralized MAPF setting, where the agents may observe the other agents only locally.
We propose a decentralized multi-agent Monte Carlo Tree Search (MCTS) method for MAPF tasks.
arXiv Detail & Related papers (2023-12-26T06:57:22Z) - Monte-Carlo Tree Search for Multi-Agent Pathfinding: Preliminary Results [60.4817465598352]
We introduce an original variant of Monte-Carlo Tree Search (MCTS) tailored to multi-agent pathfinding.
Specifically, we use individual paths to assist the agents with the the goal-reaching behavior.
We also use a dedicated decomposition technique to reduce the branching factor of the tree search procedure.
arXiv Detail & Related papers (2023-07-25T12:33:53Z) - Multi-objective Conflict-based Search Using Safe-interval Path Planning [10.354181009277623]
We present a new multi-objective conflict-based search (MO-CBS) approach that relies on a novel multi-objective safe interval path planning (MO-SIPP) algorithm for its low-level search.
We present extensive numerical results to show that there is an order of magnitude improvement in the average low level search time.
We also provide a case study to demonstrate the potential application of the proposed algorithms for construction site planning.
arXiv Detail & Related papers (2021-08-02T09:42:08Z) - Loosely Synchronized Search for Multi-agent Path Finding with
Asynchronous Actions [10.354181009277623]
Multi-agent path finding (MAPF) determines an ensemble of collision-free paths for multiple agents between their respective start and goal locations.
This article presents a natural generalization of MAPF with asynchronous actions where agents do not necessarily start and stop concurrently.
arXiv Detail & Related papers (2021-03-08T02:34:17Z) - Multi-objective Conflict-based Search for Multi-agent Path Finding [10.354181009277623]
Multi-objective path planners typically compute an ensemble of paths while optimizing a single objective, such as path length.
This article presents an approach named Multi-objective Conflict-based Search (MO-CBS) that bypasses this so-called curse of dimensionality.
arXiv Detail & Related papers (2021-01-11T10:42:38Z) - Multi-Goal Multi-Agent Path Finding via Decoupled and Integrated Goal
Vertex Ordering [15.99072005190786]
We introduce multi-goal multi agent path finding (MAPF$MG$) which generalizes the standard discrete multi-agent path finding (MAPF) problem.
We suggest two novel algorithms using different paradigms to address MAPF$MG$: a search-based search algorithm called Hamiltonian-CBS (HCBS) and a compilation-based algorithm built using the SMT paradigm, called SMT-Hamiltonian-CBS (SMT-HCBS)
arXiv Detail & Related papers (2020-09-10T22:27:18Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
We present a multi-robot allocation algorithm that decouples the key computational challenges of sequential decision-making under uncertainty and multi-agent coordination.
We validate our results over a wide range of simulations on two distinct domains: multi-arm conveyor belt pick-and-place and multi-drone delivery dispatch in a city.
arXiv Detail & Related papers (2020-05-27T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.