X-Diffusion: Generating Detailed 3D MRI Volumes From a Single Image Using Cross-Sectional Diffusion Models
- URL: http://arxiv.org/abs/2404.19604v1
- Date: Tue, 30 Apr 2024 14:53:07 GMT
- Title: X-Diffusion: Generating Detailed 3D MRI Volumes From a Single Image Using Cross-Sectional Diffusion Models
- Authors: Emmanuelle Bourigault, Abdullah Hamdi, Amir Jamaludin,
- Abstract summary: X-Diffusion is a cross-sectional diffusion model tailored for Magnetic Resonance Imaging (MRI) data.
X-Diffusion is able to generate detailed 3D MRI volume from a single full-body DXA.
Remarkably, the resultant MRIs flawlessly retain essential features of the original MRI, including tumour profiles, spine curvature, brain volume, and beyond.
- Score: 6.046082223332061
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this work, we present X-Diffusion, a cross-sectional diffusion model tailored for Magnetic Resonance Imaging (MRI) data. X-Diffusion is capable of generating the entire MRI volume from just a single MRI slice or optionally from few multiple slices, setting new benchmarks in the precision of synthesized MRIs from extremely sparse observations. The uniqueness lies in the novel view-conditional training and inference of X-Diffusion on MRI volumes, allowing for generalized MRI learning. Our evaluations span both brain tumour MRIs from the BRATS dataset and full-body MRIs from the UK Biobank dataset. Utilizing the paired pre-registered Dual-energy X-ray Absorptiometry (DXA) and MRI modalities in the UK Biobank dataset, X-Diffusion is able to generate detailed 3D MRI volume from a single full-body DXA. Remarkably, the resultant MRIs not only stand out in precision on unseen examples (surpassing state-of-the-art results by large margins) but also flawlessly retain essential features of the original MRI, including tumour profiles, spine curvature, brain volume, and beyond. Furthermore, the trained X-Diffusion model on the MRI datasets attains a generalization capacity out-of-domain (e.g. generating knee MRIs even though it is trained on brains). The code is available on the project website https://emmanuelleb985.github.io/XDiffusion/ .
Related papers
- A Diffusion-based Xray2MRI Model: Generating Pseudo-MRI Volumes From one Single X-ray [6.014316825270666]
We introduce a novel diffusion-based Xray2MRI model capable of generating pseudo-MRI volumes from a single X-ray image.
Experimental results demonstrate that our proposed approach is capable of generating pseudo-MRI sequences that approximate real MRI scans.
arXiv Detail & Related papers (2024-10-09T15:44:34Z) - Towards General Text-guided Image Synthesis for Customized Multimodal Brain MRI Generation [51.28453192441364]
Multimodal brain magnetic resonance (MR) imaging is indispensable in neuroscience and neurology.
Current MR image synthesis approaches are typically trained on independent datasets for specific tasks.
We present TUMSyn, a Text-guided Universal MR image Synthesis model, which can flexibly generate brain MR images.
arXiv Detail & Related papers (2024-09-25T11:14:47Z) - fMRI-3D: A Comprehensive Dataset for Enhancing fMRI-based 3D Reconstruction [50.534007259536715]
We present the fMRI-3D dataset, which includes data from 15 participants and showcases a total of 4768 3D objects.
We propose MinD-3D, a novel framework designed to decode 3D visual information from fMRI signals.
arXiv Detail & Related papers (2024-09-17T16:13:59Z) - Unpaired Volumetric Harmonization of Brain MRI with Conditional Latent Diffusion [13.563413478006954]
We propose a novel 3D MRI Harmonization framework through Conditional Latent Diffusion (HCLD)
It comprises a generalizable 3D autoencoder that encodes and decodes MRIs through a 4D latent space.
HCLD learns the latent distribution and generates harmonized MRIs with anatomical information from source MRIs while conditioned on target image style.
arXiv Detail & Related papers (2024-08-18T00:13:48Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising.
We tested a method for generating microscopic histological images from MRI scans of the corpus callosum using conditional generative adversarial network (cGAN) architecture.
arXiv Detail & Related papers (2023-10-16T13:58:53Z) - InverseSR: 3D Brain MRI Super-Resolution Using a Latent Diffusion Model [1.4126798060929953]
High-resolution (HR) MRI scans obtained from research-grade medical centers provide precise information about imaged tissues.
routine clinical MRI scans are typically in low-resolution (LR)
End-to-end deep learning methods for MRI super-resolution (SR) have been proposed, but they require re-training each time there is a shift in the input distribution.
We propose a novel approach that leverages a state-of-the-art 3D brain generative model, the latent diffusion model (LDM) trained on UK BioBank.
arXiv Detail & Related papers (2023-08-23T23:04:42Z) - Video4MRI: An Empirical Study on Brain Magnetic Resonance Image
Analytics with CNN-based Video Classification Frameworks [60.42012344842292]
3D CNN-based models dominate the field of magnetic resonance image (MRI) analytics.
In this paper, four datasets of Alzheimer's and Parkinson's disease recognition are utilized in experiments.
In terms of efficiency, the video framework performs better than 3D-CNN models by 5% - 11% with 50% - 66% less trainable parameters.
arXiv Detail & Related papers (2023-02-24T15:26:31Z) - Perfusion imaging in deep prostate cancer detection from mp-MRI: can we
take advantage of it? [0.0]
We evaluate strategies to integrate information from perfusion imaging in deep neural architectures.
Perfusion maps from dynamic contrast enhanced MR exams are shown to positively impact segmentation and grading performance of PCa lesions.
arXiv Detail & Related papers (2022-07-06T07:55:46Z) - 3D Reconstruction and Segmentation of Dissection Photographs for
MRI-free Neuropathology [2.4984854046383624]
We present methodology to reconstruct and segment full brain image volumes from brain dissection photographs.
The 3D reconstruction is achieved via a joint registration framework, which uses a reference volume other than MRI.
We evaluate our methods on a dataset with 24 brains, using Dice scores and volume correlations.
arXiv Detail & Related papers (2020-09-11T18:21:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.