論文の概要: X-Diffusion: Generating Detailed 3D MRI Volumes From a Single Image Using Cross-Sectional Diffusion Models
- arxiv url: http://arxiv.org/abs/2404.19604v2
- Date: Wed, 12 Feb 2025 13:46:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 18:10:00.561443
- Title: X-Diffusion: Generating Detailed 3D MRI Volumes From a Single Image Using Cross-Sectional Diffusion Models
- Title(参考訳): X線拡散:断面拡散モデルを用いた1つの画像から詳細な3次元MRIボリュームを生成する
- Authors: Emmanuelle Bourigault, Abdullah Hamdi, Amir Jamaludin,
- Abstract要約: X-拡散(X-Diffusion)は、空間領域入力から詳細な3次元MRIボリュームを再構成する新しい断面積拡散モデルである。
X-Diffusionの重要な側面は、MRIデータを横断的なトレーニングと推論の間、全体的な3Dボリュームとしてモデル化することである。
以上の結果から,X-Diffusionは定量精度(PSNR)に優れるだけでなく,重要な解剖学的特徴を保っていることが示唆された。
- 参考スコア(独自算出の注目度): 6.046082223332061
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Magnetic Resonance Imaging (MRI) is a crucial diagnostic tool, but high-resolution scans are often slow and expensive due to extensive data acquisition requirements. Traditional MRI reconstruction methods aim to expedite this process by filling in missing frequency components in the K-space, performing 3D-to-3D reconstructions that demand full 3D scans. In contrast, we introduce X-Diffusion, a novel cross-sectional diffusion model that reconstructs detailed 3D MRI volumes from extremely sparse spatial-domain inputs, achieving 2D-to-3D reconstruction from as little as a single 2D MRI slice or few slices. A key aspect of X-Diffusion is that it models MRI data as holistic 3D volumes during the cross-sectional training and inference, unlike previous learning approaches that treat MRI scans as collections of 2D slices in standard planes (coronal, axial, sagittal). We evaluated X-Diffusion on brain tumor MRIs from the BRATS dataset and full-body MRIs from the UK Biobank dataset. Our results demonstrate that X-Diffusion not only surpasses state-of-the-art methods in quantitative accuracy (PSNR) on unseen data but also preserves critical anatomical features such as tumor profiles, spine curvature, and brain volume. Remarkably, the model generalizes beyond the training domain, successfully reconstructing knee MRIs despite being trained exclusively on brain data. Medical expert evaluations further confirm the clinical relevance and fidelity of the generated images.To our knowledge, X-Diffusion is the first method capable of producing detailed 3D MRIs from highly limited 2D input data, potentially accelerating MRI acquisition and reducing associated costs. The code is available on the project website https://emmanuelleb985.github.io/XDiffusion/ .
- Abstract(参考訳): 磁気共鳴イメージング(MRI)は重要な診断ツールであるが、大規模なデータ取得要求のため、高解像度スキャンは遅くて高価であることが多い。
従来のMRI再構成法では、K空間の周波数成分の欠如を埋め、完全な3Dスキャンを必要とする3D-to-3D再構成を実行することで、このプロセスの迅速化を目指している。
対照的に、X-Diffusionは、空間領域の入力から細かな3次元MRIボリュームを再構成し、単一の2次元MRIスライスまたは少数のスライスから2次元から3次元の再構成を実現する新しい断面拡散モデルである。
X-Diffusionの重要な側面は、MRIデータを横断的なトレーニングと推論の間に総体的な3Dボリュームとしてモデル化することである。
我々は、BRATSデータセットとUK BiobankデータセットのフルボディMRIを用いて、脳腫瘍MRIのX-Diffusionを評価した。
以上の結果から,X-Diffusionは定量精度(PSNR)を上回り,腫瘍像,脊椎曲率,脳容積などの重要な解剖学的特徴を保っていることが示唆された。
興味深いことに、このモデルはトレーニング領域を超えて一般化され、脳データにのみ訓練されているにもかかわらず、膝関節MRIの再構築に成功した。
X-Diffusionは、非常に限られた2次元入力データから詳細な3次元MRIを作成できる最初の方法であり、MRIの取得を加速し、関連するコストを削減できる。
コードはプロジェクトのWebサイトhttps://emmanuelleb985.github.io/XDiffusion/で公開されている。
関連論文リスト
- ZECO: ZeroFusion Guided 3D MRI Conditional Generation [11.645873358288648]
ZECOはZeroFusionでガイドされた3D MRI条件生成フレームワークである。
対応する3Dセグメンテーションマスクを備えた高忠実度MRI画像の抽出、圧縮、生成を行う。
ZECOは、脳MRIデータセットの定量的および質的な評価において、最先端モデルよりも優れている。
論文 参考訳(メタデータ) (2025-03-24T00:04:52Z) - Unified 3D MRI Representations via Sequence-Invariant Contrastive Learning [0.15749416770494706]
定量的MRI(qMRI)を利用したシーケンス不変な自己教師型フレームワークを提案する。
健常脳セグメンテーション(IXI)、脳梗塞セグメンテーション(ARC)、MRIによるデノイング実験は、ベースラインSSLアプローチよりも有意な増加を示した。
また,本モデルは,よりスケーラブルで臨床的に信頼性の高いボリューム分析の可能性を示した。
論文 参考訳(メタデータ) (2025-01-21T11:27:54Z) - MRI Reconstruction with Regularized 3D Diffusion Model (R3DM) [2.842800539489865]
正規化3次元拡散モデルと最適化手法を組み合わせた3次元MRI再構成法を提案する。
拡散に基づく事前処理を取り入れることで,画像品質の向上,ノイズの低減,3次元MRI再構成の全体的な忠実度の向上を実現した。
論文 参考訳(メタデータ) (2024-12-25T00:55:05Z) - 3D MedDiffusion: A 3D Medical Diffusion Model for Controllable and High-quality Medical Image Generation [47.701856217173244]
制御可能な高品質な3次元医用画像生成のための3Dメディカルディフュージョン(3Dメドディフュージョン)モデル
3D MedDiffusionは、パッチワイドエンコーディングによって医療画像を潜在空間に圧縮する、新しくて高効率なPatch-Volume Autoencoderを組み込んでいる。
3D MedDiffusion は, 再生品質において最先端の手法を超越し, スパースビューCT再構成, 高速MRI再構成, データ拡張などのタスクに強い一般化性を示すことを示す。
論文 参考訳(メタデータ) (2024-12-17T16:25:40Z) - A Diffusion-based Xray2MRI Model: Generating Pseudo-MRI Volumes From one Single X-ray [6.014316825270666]
単一X線画像から擬似MRIボリュームを生成することができる新しい拡散型Xray2MRIモデルを提案する。
実験の結果,提案手法は実際のMRIスキャンを近似した擬似MRIシーケンスを生成することができることがわかった。
論文 参考訳(メタデータ) (2024-10-09T15:44:34Z) - Towards General Text-guided Image Synthesis for Customized Multimodal Brain MRI Generation [51.28453192441364]
マルチモーダル脳磁気共鳴(MR)イメージングは神経科学や神経学において不可欠である。
現在のMR画像合成アプローチは、通常、特定のタスクのための独立したデータセットで訓練される。
テキスト誘導ユニバーサルMR画像合成モデルであるTUMSynについて述べる。
論文 参考訳(メタデータ) (2024-09-25T11:14:47Z) - fMRI-3D: A Comprehensive Dataset for Enhancing fMRI-based 3D Reconstruction [50.534007259536715]
我々は15人の参加者のデータを含むfMRI-3Dデータセットを提示し、合計4768個の3Dオブジェクトを展示する。
我々は,fMRI信号から3次元視覚情報を復号化するための新しいフレームワークMinD-3Dを提案する。
論文 参考訳(メタデータ) (2024-09-17T16:13:59Z) - Unpaired Volumetric Harmonization of Brain MRI with Conditional Latent Diffusion [13.563413478006954]
条件付き潜時拡散(HCLD)による新しい3次元MRI高調波化フレームワークを提案する。
一般化可能な3Dオートエンコーダを備え、4Dラテント空間を通じてMRIを符号化しデコードする。
HCLDは、潜伏分布を学習し、ターゲット画像スタイルで条件付きで、ソースMRIから解剖学的情報と調和したMRIを生成する。
論文 参考訳(メタデータ) (2024-08-18T00:13:48Z) - Slice-Consistent 3D Volumetric Brain CT-to-MRI Translation with 2D Brownian Bridge Diffusion Model [3.4248731707266264]
神経画像では、一般的に、脳のCTはMRIよりも費用効率が高く、アクセスしやすい。
医用画像・画像翻訳(I2I)は有望な解決策である。
本研究は,2次元 DM のみに基づく高品質な3次元医療用 I2I を実現する最初の試みである。
論文 参考訳(メタデータ) (2024-07-06T12:13:36Z) - Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
被験者のfMRIデータを入力として利用する新しい3Dオブジェクト表現学習手法であるBrain3Dを設計する。
我々は,人間の視覚系の各領域の異なる機能的特徴を,我々のモデルが捉えていることを示す。
予備評価は、Brain3Dがシミュレーションシナリオで障害した脳領域を正常に識別できることを示唆している。
論文 参考訳(メタデータ) (2024-05-24T06:06:11Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
磁気共鳴イメージング(MRI)のクロスモーダル増強と、同じ組織サンプルに基づく顕微鏡イメージングが期待できる。
コンディショナル・ジェネレーティブ・逆境ネットワーク (cGAN) アーキテクチャを用いて, コーパス・カロサムのMRI画像から顕微鏡組織像を生成する方法を検討した。
論文 参考訳(メタデータ) (2023-10-16T13:58:53Z) - InverseSR: 3D Brain MRI Super-Resolution Using a Latent Diffusion Model [1.4126798060929953]
研究グレードの医療センターから得られた高分解能(HR)MRIスキャンは、画像化された組織に関する正確な情報を提供する。
通常の臨床MRIスキャンは通常、低分解能(LR)である
MRI超解像(SR)のためのエンドツーエンドのディープラーニング手法が提案されているが、入力分布の変化があるたびに再学習する必要がある。
本稿では,英国バイオバンクでトレーニングされた最新の3D脳生成モデル,潜在拡散モデル(LDM)を活用する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-08-23T23:04:42Z) - Video4MRI: An Empirical Study on Brain Magnetic Resonance Image
Analytics with CNN-based Video Classification Frameworks [60.42012344842292]
3次元CNNモデルが磁気共鳴画像(MRI)解析の分野を支配している。
本稿では,アルツハイマー病とパーキンソン病の認識の4つのデータセットを実験に利用した。
効率の面では、ビデオフレームワークは3D-CNNモデルよりも5%から11%、トレーニング可能なパラメータは50%から66%少ない。
論文 参考訳(メタデータ) (2023-02-24T15:26:31Z) - Moving from 2D to 3D: volumetric medical image classification for rectal
cancer staging [62.346649719614]
術前T2期とT3期を区別することは直腸癌治療における最も困難かつ臨床的に重要な課題である。
直腸MRIでT3期直腸癌からT2を正確に判別するための体積畳み込みニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-13T07:10:14Z) - Perfusion imaging in deep prostate cancer detection from mp-MRI: can we
take advantage of it? [0.0]
深部神経アーキテクチャにおける灌流画像からの情報を統合するための戦略を評価する。
ダイナミックコントラスト造影MR検査からの灌流マップでは,PCa病変のセグメンテーションとグレーディング性能に正の影響が認められた。
論文 参考訳(メタデータ) (2022-07-06T07:55:46Z) - 3-Dimensional Deep Learning with Spatial Erasing for Unsupervised
Anomaly Segmentation in Brain MRI [55.97060983868787]
我々は,MRIボリュームと空間消去を組み合わせた空間文脈の増大が,教師なしの異常セグメンテーション性能の向上に繋がるかどうかを検討する。
本稿では,2次元変分オートエンコーダ(VAE)と3次元の相違点を比較し,3次元入力消去を提案し,データセットサイズが性能に与える影響を体系的に検討する。
入力消去による最高の3D VAEは、平均DICEスコアが31.40%となり、2D VAEは25.76%となった。
論文 参考訳(メタデータ) (2021-09-14T09:17:27Z) - 3D Reconstruction and Segmentation of Dissection Photographs for
MRI-free Neuropathology [2.4984854046383624]
脳郭清画像から全脳像量を再構成・分画する手法を提案する。
3次元再構成は、MRI以外の参照ボリュームを使用する共同登録フレームワークによって達成される。
我々は,Diceスコアとボリューム相関を用いて,24脳のデータセット上で本手法の評価を行った。
論文 参考訳(メタデータ) (2020-09-11T18:21:00Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
本研究では,2次元スライスVAEとガウスモデルを組み合わせた3次元MR脳の体積分布をモデル化する手法を提案する。
また,本研究では,脳解剖学に適合するセグメンテーションの精度を定量的に評価する新たなボリューム評価手法を提案する。
論文 参考訳(メタデータ) (2020-07-09T13:23:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。