論文の概要: Attacking Bayes: On the Adversarial Robustness of Bayesian Neural Networks
- arxiv url: http://arxiv.org/abs/2404.19640v1
- Date: Sat, 27 Apr 2024 01:34:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 13:46:04.923879
- Title: Attacking Bayes: On the Adversarial Robustness of Bayesian Neural Networks
- Title(参考訳): ベイズ攻撃:ベイズニューラルネットワークの敵対的ロバスト性について
- Authors: Yunzhen Feng, Tim G. J. Rudner, Nikolaos Tsilivis, Julia Kempe,
- Abstract要約: 我々は,最先端のBNN推論手法と予測パイプラインを破ることが可能であるか検討する。
我々は、最先端の近似推論手法で訓練されたBNNや、ハミルトン・モンテカルロで訓練されたBNNでさえ、敵の攻撃に非常に敏感であることがわかった。
- 参考スコア(独自算出の注目度): 10.317475068017961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial examples have been shown to cause neural networks to fail on a wide range of vision and language tasks, but recent work has claimed that Bayesian neural networks (BNNs) are inherently robust to adversarial perturbations. In this work, we examine this claim. To study the adversarial robustness of BNNs, we investigate whether it is possible to successfully break state-of-the-art BNN inference methods and prediction pipelines using even relatively unsophisticated attacks for three tasks: (1) label prediction under the posterior predictive mean, (2) adversarial example detection with Bayesian predictive uncertainty, and (3) semantic shift detection. We find that BNNs trained with state-of-the-art approximate inference methods, and even BNNs trained with Hamiltonian Monte Carlo, are highly susceptible to adversarial attacks. We also identify various conceptual and experimental errors in previous works that claimed inherent adversarial robustness of BNNs and conclusively demonstrate that BNNs and uncertainty-aware Bayesian prediction pipelines are not inherently robust against adversarial attacks.
- Abstract(参考訳): 敵対的な例は、ニューラルネットワークを幅広いビジョンや言語タスクで失敗させることを示したが、最近の研究は、ベイズニューラルネットワーク(BNN)が本質的に敵の摂動に対して堅牢であると主張している。
本稿では,この主張について考察する。
BNNの対角的ロバスト性を調べるため,BNNの予測手法と予測パイプラインを比較的洗練されていない攻撃を用いて3つのタスクに対して破ることが可能であるかを検討する。
我々は、最先端の近似推論手法で訓練されたBNNや、ハミルトン・モンテカルロで訓練されたBNNでさえ、敵の攻撃に非常に敏感であることがわかった。
また,BNNの本質的にの敵意的堅牢性を主張し,BNNと不確実性を考慮したベイズ予測パイプラインが本質的に敵意的攻撃に対して堅牢ではないことを確定的に証明する以前の研究において,様々な概念的および実験的誤りも見出した。
関連論文リスト
- ARBiBench: Benchmarking Adversarial Robustness of Binarized Neural
Networks [22.497327185841232]
ネットワークビナライゼーションは、計算コストの低いリソース制約されたデバイスに展開する大きな可能性を示す。
重要な重要性にもかかわらず、バイナライズされたニューラルネットワーク(BNN)のセキュリティはめったに調査されない。
敵の摂動に対するBNNの堅牢性を評価するための総合的なベンチマークであるARBiBenchを提案する。
論文 参考訳(メタデータ) (2023-12-21T04:48:34Z) - On the Robustness of Bayesian Neural Networks to Adversarial Attacks [11.277163381331137]
敵対的攻撃に対する脆弱性は、安全クリティカルなアプリケーションでディープラーニングを採用する上で、大きなハードルのひとつです。
データ分布の縮退の結果、勾配に基づく攻撃に対する脆弱性が生じることを示す。
BNN後部分布に対する損失の予測勾配は、後部からサンプリングされた各ニューラルネットワークが勾配に基づく攻撃に対して脆弱である場合でも消滅していることを示す。
論文 参考訳(メタデータ) (2022-07-13T12:27:38Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
モデルトレーニングに敵の例を注入する最も効果的な戦略は、敵のトレーニングであることが証明されている。
本稿では, LAtent bounDary-guided aDvErsarial tRaining という新たな逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-08T07:40:55Z) - Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer [77.78479877473899]
我々は,BNNを大規模モデルに効率的にスケールするための時空間BNNを設計する。
バニラBNNと比較して,本手法はトレーニング時間とパラメータ数を著しく削減し,BNNのスケールアップに有効である。
論文 参考訳(メタデータ) (2021-12-12T17:13:14Z) - Robustness of Bayesian Neural Networks to White-Box Adversarial Attacks [55.531896312724555]
ベイジアンネットワーク(BNN)は、ランダム性を組み込むことで、敵の攻撃を扱うのに頑丈で適している。
我々はベイズ的推論(つまり変分ベイズ)をDenseNetアーキテクチャに融合させることで、BNN-DenseNetと呼ばれるBNNモデルを作成する。
逆向きに訓練されたBNNは、ほとんどの実験で非ベイズ的で逆向きに訓練されたBNNよりも優れています。
論文 参考訳(メタデータ) (2021-11-16T16:14:44Z) - Exploring Architectural Ingredients of Adversarially Robust Deep Neural
Networks [98.21130211336964]
ディープニューラルネットワーク(DNN)は敵の攻撃に弱いことが知られている。
本稿では,ネットワーク幅と深さがDNNの強靭性に及ぼす影響について検討する。
論文 参考訳(メタデータ) (2021-10-07T23:13:33Z) - Resilience of Bayesian Layer-Wise Explanations under Adversarial Attacks [3.222802562733787]
決定論的ニューラルネットワークでは,攻撃が失敗した場合でも,サリエンシ解釈が著しく脆弱であることを示す。
ベイジアンニューラルネットワークによるサリエンシの説明は, 対向的摂動下ではかなり安定していることを示す。
論文 参考訳(メタデータ) (2021-02-22T14:07:24Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
本研究では, 実数値から, 最終予測分布上のバイナリネットワークへの誘導型学習パラダイムを提案する。
提案手法は,bnn上で5.515%の絶対利得で,単純なコントラスト学習ベースラインを向上できる。
提案手法は、単純なコントラスト学習ベースラインよりも大幅に改善され、多くの主流教師付きBNN手法に匹敵する。
論文 参考訳(メタデータ) (2021-02-17T18:59:28Z) - Proper Network Interpretability Helps Adversarial Robustness in
Classification [91.39031895064223]
本稿では,解釈の適切な測定を行うことで,予測回避攻撃が解釈の不一致を引き起こすのを防ぐことは困難であることを示す。
我々は,頑健な解釈の促進にのみ焦点をあてて,解釈可能性に配慮した防御手法を開発した。
その結果,我々の防衛力は,強靭な分類と頑健な解釈の両方を達成し,大規模な摂動攻撃に対する最先端の対人訓練方法よりも優れていた。
論文 参考訳(メタデータ) (2020-06-26T01:31:31Z) - Robustness of Bayesian Neural Networks to Gradient-Based Attacks [9.966113038850946]
敵対的攻撃に対する脆弱性は、安全クリティカルなアプリケーションでディープラーニングを採用する上で、大きなハードルのひとつです。
データ分布の縮退の結果、勾配に基づく攻撃に対する脆弱性が生じることを示す。
以上の結果から,BNN後頭葉は勾配に基づく対向攻撃に対して頑健であることが示唆された。
論文 参考訳(メタデータ) (2020-02-11T13:03:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。