論文の概要: Beyond MOS: Subjective Image Quality Score Preprocessing Method Based on Perceptual Similarity
- arxiv url: http://arxiv.org/abs/2404.19666v1
- Date: Tue, 30 Apr 2024 16:01:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 13:36:16.117780
- Title: Beyond MOS: Subjective Image Quality Score Preprocessing Method Based on Perceptual Similarity
- Title(参考訳): MOSを超えて:知覚的類似性に基づく主観的画質スコア前処理法
- Authors: Lei Wang, Desen Yuan,
- Abstract要約: ITU-R BT.500、ITU-T P.910、ITU-T P.913は、当初の世論点をクリアするために標準化されている。
PSPは画像間の知覚的類似性を利用して、より注釈の少ないシナリオにおける主観的バイアスを軽減する。
- 参考スコア(独自算出の注目度): 2.290956583394892
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image quality assessment often relies on raw opinion scores provided by subjects in subjective experiments, which can be noisy and unreliable. To address this issue, postprocessing procedures such as ITU-R BT.500, ITU-T P.910, and ITU-T P.913 have been standardized to clean up the original opinion scores. These methods use annotator-based statistical priors, but they do not take into account extensive information about the image itself, which limits their performance in less annotated scenarios. Generally speaking, image quality datasets usually contain similar scenes or distortions, and it is inevitable for subjects to compare images to score a reasonable score when scoring. Therefore, In this paper, we proposed Subjective Image Quality Score Preprocessing Method perceptual similarity Subjective Preprocessing (PSP), which exploit the perceptual similarity between images to alleviate subjective bias in less annotated scenarios. Specifically, we model subjective scoring as a conditional probability model based on perceptual similarity with previously scored images, called subconscious reference scoring. The reference images are stored by a neighbor dictionary, which is obtained by a normalized vector dot-product based nearest neighbor search of the images' perceptual depth features. Then the preprocessed score is updated by the exponential moving average (EMA) of the subconscious reference scoring, called similarity regularized EMA. Our experiments on multiple datasets (LIVE, TID2013, CID2013) show that this method can effectively remove the bias of the subjective scores. Additionally, Experiments prove that the Preprocesed dataset can improve the performance of downstream IQA tasks very well.
- Abstract(参考訳): 画像品質評価は、被験者が主観的な実験で提供した生の意見スコアに依存することが多い。
この問題に対処するため、ITU-R BT.500、ITU-T P.910、ITU-T P.913などの後処理手順が標準化され、当初の評価スコアが標準化された。
これらの手法では、アノテータに基づく統計的先行値を用いるが、画像自体に関する広範な情報を考慮していないため、アノテーションの少ないシナリオではパフォーマンスが制限される。
一般的に、画像の品質データセットは、通常、類似のシーンや歪みを含んでおり、被験者が画像を比較してスコアを採点するのは難しい。
そこで本稿では,主観的画像品質スコア前処理手法(PSP)を提案する。
具体的には,従来の画像と知覚的類似性に基づいて,主観的評価を条件付き確率モデルとしてモデル化する。
基準画像は、画像の知覚深度特徴の正規化ベクトルドット積に基づく近接探索により得られる隣接辞書によって記憶される。
そして、前処理されたスコアを、類似性正規化EMA(英語版)と呼ばれる潜在意識基準スコアの指数移動平均(EMA)によって更新する。
複数のデータセット (LIVE, TID2013, CID2013) に対する実験により, 本手法は主観的スコアのバイアスを効果的に除去できることを示した。
さらに、Experimentsは、Preprocesedデータセットが下流IQAタスクのパフォーマンスを非常に良く改善できることを証明している。
関連論文リスト
- Adaptive Image Quality Assessment via Teaching Large Multimodal Model to Compare [99.57567498494448]
我々はLMMに基づくノン参照IQAモデルであるCompare2Scoreを紹介する。
トレーニング中、同じIQAデータセットの画像を比較することで、スケールアップ比較命令を生成する。
9つのIQAデータセットの実験により、Compare2Scoreは、トレーニング中にテキスト定義の比較レベルを効果的にブリッジすることを確認した。
論文 参考訳(メタデータ) (2024-05-29T17:26:09Z) - Regression-free Blind Image Quality Assessment with Content-Distortion
Consistency [42.683300312253884]
画像品質評価のための回帰フリーフレームワークを提案する。
これは、セマンティックな特徴空間と歪みのある特徴空間を組み込むことで、局所的に類似したインスタンスを検索することに基づいている。
提案手法は, 最先端の回帰に基づく手法と比較して, 競争力や性能に優れる。
論文 参考訳(メタデータ) (2023-07-18T14:19:28Z) - Balancing the Picture: Debiasing Vision-Language Datasets with Synthetic
Contrast Sets [52.77024349608834]
視覚言語モデルは、インターネットから未計算の画像テキストペアの事前トレーニング中に学んだ社会的バイアスを永続し、増幅することができる。
COCO Captionsは、背景コンテキストとその場にいる人々の性別間のバイアスを評価するために最も一般的に使用されるデータセットである。
本研究では,COCOデータセットを男女バランスの取れたコントラストセットで拡張する新しいデータセットデバイアスパイプラインを提案する。
論文 参考訳(メタデータ) (2023-05-24T17:59:18Z) - PIQI: Perceptual Image Quality Index based on Ensemble of Gaussian
Process Regression [2.9412539021452715]
デジタル画像の品質を評価するためにPIQI(Perceptual Image Quality Index)を提案する。
PIQIの性能は6つのベンチマークデータベースでチェックされ、12の最先端の手法と比較される。
論文 参考訳(メタデータ) (2023-05-16T06:44:17Z) - Masked Images Are Counterfactual Samples for Robust Fine-tuning [77.82348472169335]
微調整の深層学習モデルは、分布内(ID)性能と分布外(OOD)堅牢性の間のトレードオフにつながる可能性がある。
そこで本研究では,マスク付き画像を対物サンプルとして用いて,ファインチューニングモデルのロバスト性を向上させる新しいファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2023-03-06T11:51:28Z) - Treatment Learning Causal Transformer for Noisy Image Classification [62.639851972495094]
本研究では,この2値情報「ノイズの存在」を画像分類タスクに組み込んで予測精度を向上させる。
因果的変動推定から動機付け,雑音画像分類のための頑健な特徴表現を潜在生成モデルを用いて推定するトランスフォーマーに基づくアーキテクチャを提案する。
また、パフォーマンスベンチマークのための幅広いノイズ要素を取り入れた、新しいノイズの多い画像データセットも作成する。
論文 参考訳(メタデータ) (2022-03-29T13:07:53Z) - Learning Conditional Knowledge Distillation for Degraded-Reference Image
Quality Assessment [157.1292674649519]
劣化参照IQA(DR-IQA)という実用的な解を提案する。
DR-IQAはIRモデルの入力、劣化したイメージを参照として利用する。
私たちの結果は、フル参照設定のパフォーマンスに近いものもあります。
論文 参考訳(メタデータ) (2021-08-18T02:35:08Z) - Scene Uncertainty and the Wellington Posterior of Deterministic Image
Classifiers [68.9065881270224]
Wellington Posteriorは、同じシーンで生成された可能性のあるデータに応答して得られるであろう結果の分布である。
We we explore the use of data augmentation, dropout, ensembling, single-view reconstruction and model linearization to compute a Wellington Posterior。
他にも、生成逆数ネットワーク、ニューラルレイディアンスフィールド、条件付き事前ネットワークなどの条件付き生成モデルの使用がある。
論文 参考訳(メタデータ) (2021-06-25T20:10:00Z) - A combined full-reference image quality assessment approach based on
convolutional activation maps [0.0]
フルリファレンス画像品質評価(FR-IQA)の目標は、人間の観察者が認識する画像の品質を、そのプリスタントな基準値を用いて予測することである。
本研究では,畳み込みアクティベーションマップから特徴ベクトルをコンパイルすることにより,歪み画像の知覚的品質を予測する手法を提案する。
論文 参考訳(メタデータ) (2020-10-19T10:00:29Z) - Evaluating and Mitigating Bias in Image Classifiers: A Causal
Perspective Using Counterfactuals [27.539001365348906]
本稿では、逆学習推論(ALI)の改良版に構造因果モデル(SCM)を組み込むことにより、逆ファクトアルを生成する方法を提案する。
本稿では,事前学習された機械学習分類器の説明方法を示し,そのバイアスを評価し,そのバイアスを正則化器を用いて緩和する方法について述べる。
論文 参考訳(メタデータ) (2020-09-17T13:19:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。