Automated Generation of High-Quality Medical Simulation Scenarios Through Integration of Semi-Structured Data and Large Language Models
- URL: http://arxiv.org/abs/2404.19713v2
- Date: Mon, 6 May 2024 17:58:48 GMT
- Title: Automated Generation of High-Quality Medical Simulation Scenarios Through Integration of Semi-Structured Data and Large Language Models
- Authors: Scott Sumpter,
- Abstract summary: This study introduces a transformative framework for medical education by integrating semi-structured data with Large Language Models (LLMs)
The proposed approach utilizes AI to efficiently generate detailed, clinically relevant scenarios that are tailored to specific educational objectives.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This study introduces a transformative framework for medical education by integrating semi-structured data with Large Language Models (LLMs), primarily OpenAIs ChatGPT3.5, to automate the creation of medical simulation scenarios. Traditionally, developing these scenarios was a time-intensive process with limited flexibility to meet diverse educational needs. The proposed approach utilizes AI to efficiently generate detailed, clinically relevant scenarios that are tailored to specific educational objectives. This innovation has significantly reduced the time and resources required for scenario development, allowing for a broader variety of simulations. Preliminary feedback from educators and learners has shown enhanced engagement and improved knowledge acquisition, confirming the effectiveness of this AI-enhanced methodology in simulation-based learning. The integration of structured data with LLMs not only streamlines the creation process but also offers a scalable, dynamic solution that could revolutionize medical training, highlighting the critical role of AI in advancing educational outcomes and patient care standards.
Related papers
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Enhancing EEG Signal Generation through a Hybrid Approach Integrating Reinforcement Learning and Diffusion Models [6.102274021710727]
This study introduces an innovative approach to the synthesis of Electroencephalogram (EEG) signals by integrating diffusion models with reinforcement learning.
Our methodology enhances the generation of EEG signals with detailed temporal and spectral features, enriching the authenticity and diversity of synthetic datasets.
arXiv Detail & Related papers (2024-09-14T07:22:31Z) - Enhancing Medical Learning and Reasoning Systems: A Boxology-Based Comparative Analysis of Design Patterns [0.0]
This study analyzes hybrid AI systems' design patterns and their effectiveness in clinical decision-making.
Boxology's structured, modular apporach offers significant advantages in developing and analyzing hybrid AI systems.
arXiv Detail & Related papers (2024-08-05T12:53:04Z) - GAMedX: Generative AI-based Medical Entity Data Extractor Using Large Language Models [1.123722364748134]
This paper introduces GAMedX, a Named Entity Recognition (NER) approach utilizing Large Language Models (LLMs)
The methodology integrates open-source LLMs for NER, utilizing chained prompts and Pydantic schemas for structured output to navigate the complexities of specialized medical jargon.
The findings reveal significant ROUGE F1 score on one of the evaluation datasets with an accuracy of 98%.
arXiv Detail & Related papers (2024-05-31T02:53:22Z) - WisPerMed at "Discharge Me!": Advancing Text Generation in Healthcare with Large Language Models, Dynamic Expert Selection, and Priming Techniques on MIMIC-IV [0.38084074204911494]
This study aims to leverage state of the art language models to automate generating the "Brief Hospital Course" and "Discharge Instructions" sections of Discharge Summaries.
We investigate how automation can improve documentation accuracy, alleviate clinician burnout, and enhance operational efficacy in healthcare facilities.
arXiv Detail & Related papers (2024-05-18T10:56:45Z) - Automated Fusion of Multimodal Electronic Health Records for Better
Medical Predictions [48.0590120095748]
We propose a novel neural architecture search (NAS) framework named AutoFM, which can automatically search for the optimal model architectures for encoding diverse input modalities and fusion strategies.
We conduct thorough experiments on real-world multi-modal EHR data and prediction tasks, and the results demonstrate that our framework achieves significant performance improvement over existing state-of-the-art methods.
arXiv Detail & Related papers (2024-01-20T15:14:14Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
We propose to improve the standard maximum likelihood estimation (MLE) paradigm by incorporating a self-imitation-learning phase for automatic data augmentation.
Unlike most existing sentence-level augmentation strategies, our method is more general and could be easily adapted to any MLE-based training procedure.
arXiv Detail & Related papers (2021-01-02T01:15:57Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Democratizing Artificial Intelligence in Healthcare: A Study of Model
Development Across Two Institutions Incorporating Transfer Learning [8.043077408518826]
Transfer learning (TL) allows a fully trained model from one institution to be fine-tuned by another institution using a much small local dataset.
This report describes the challenges, methodology, and benefits of TL within the context of developing an AI model for a basic use-case.
arXiv Detail & Related papers (2020-09-25T21:12:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.