Enhancing Medical Learning and Reasoning Systems: A Boxology-Based Comparative Analysis of Design Patterns
- URL: http://arxiv.org/abs/2408.02709v1
- Date: Mon, 5 Aug 2024 12:53:04 GMT
- Title: Enhancing Medical Learning and Reasoning Systems: A Boxology-Based Comparative Analysis of Design Patterns
- Authors: Chi Him Ng,
- Abstract summary: This study analyzes hybrid AI systems' design patterns and their effectiveness in clinical decision-making.
Boxology's structured, modular apporach offers significant advantages in developing and analyzing hybrid AI systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study analyzes hybrid AI systems' design patterns and their effectiveness in clinical decision-making using the boxology framework. It categorizes and copares various architectures combining machine learning and rule-based reasoning to provide insights into their structural foundations and healthcare applications. Addressing two main questions, how to categorize these systems againts established design patterns and how to extract insights through comparative analysis, the study uses design patterns from software engineering to understand and optimize healthcare AI systems. Boxology helps identify commonalities and create reusable solutions, enhancing these systems' scalability, reliability, and performance. Five primary architectures are examined: REML, MLRB, RBML, RMLT, and PERML. Each has unique strengths and weaknesses, highlighting the need for tailored approaches in clinical tasks. REML excels in high-accuracy prediction for datasets with limited data; MLRB in handling large datasets and complex data integration; RBML in explainability and trustworthiness; RMLT in managing high-dimensional data; and PERML, though limited in analysis, shows promise in urgent care scenarios. The study introduces four new patterns, creates five abstract categorization patterns, and refines those five further to specific systems. These contributions enhance Boxlogy's taxonomical organization and offer novel approaches to integrating expert knowledge with machine learning. Boxology's structured, modular apporach offers significant advantages in developing and analyzing hybrid AI systems, revealing commonalities, and promoting reusable solutions. In conclusion, this study underscores hybrid AI systems' crucial role in advancing healthcare and Boxology's potential to drive further innovation in AI integration, ultimately improving clinical decision support and patient outcomes.
Related papers
- From large language models to multimodal AI: A scoping review on the potential of generative AI in medicine [40.23383597339471]
multimodal AI is capable of integrating diverse data modalities, including imaging, text, and structured data, within a single model.
This scoping review explores the evolution of multimodal AI, highlighting its methods, applications, datasets, and evaluation in clinical settings.
Our findings underscore a shift from unimodal to multimodal approaches, driving innovations in diagnostic support, medical report generation, drug discovery, and conversational AI.
arXiv Detail & Related papers (2025-02-13T11:57:51Z) - Approach to Designing CV Systems for Medical Applications: Data, Architecture and AI [0.0]
This paper introduces an innovative software system for fundus image analysis that deliberately diverges from the conventional screening approach.
Our methodology mimics the diagnostic process by thoroughly analyzing both normal and pathological features of fundus structures.
The system, from its overarching architecture to the modular analysis design powered by artificial intelligence (AI) models, aligns seamlessly with ophthalmological practices.
arXiv Detail & Related papers (2025-01-24T18:02:32Z) - Patient-centered data science: an integrative framework for evaluating and predicting clinical outcomes in the digital health era [0.0]
This study proposes a novel, integrative framework for patient-centered data science in the digital health era.
We developed a multidimensional model that combines traditional clinical data with patient-reported outcomes, social determinants of health, and multi-omic data to create comprehensive digital patient representations.
arXiv Detail & Related papers (2024-07-31T02:36:17Z) - Automated Generation of High-Quality Medical Simulation Scenarios Through Integration of Semi-Structured Data and Large Language Models [0.0]
This study introduces a transformative framework for medical education by integrating semi-structured data with Large Language Models (LLMs)
The proposed approach utilizes AI to efficiently generate detailed, clinically relevant scenarios that are tailored to specific educational objectives.
arXiv Detail & Related papers (2024-04-30T17:06:11Z) - Automated Fusion of Multimodal Electronic Health Records for Better
Medical Predictions [48.0590120095748]
We propose a novel neural architecture search (NAS) framework named AutoFM, which can automatically search for the optimal model architectures for encoding diverse input modalities and fusion strategies.
We conduct thorough experiments on real-world multi-modal EHR data and prediction tasks, and the results demonstrate that our framework achieves significant performance improvement over existing state-of-the-art methods.
arXiv Detail & Related papers (2024-01-20T15:14:14Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridge is a visual analytics tool that seamlessly incorporates machine learning explanations into clinicians' decision-making workflow.
We identified three key challenges, including clinicians' unfamiliarity with ML features, lack of contextual information, and the need for cohort-level evidence.
We demonstrated the effectiveness of VBridge through two case studies and expert interviews with four clinicians.
arXiv Detail & Related papers (2021-08-04T17:34:13Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - Moral Decision-Making in Medical Hybrid Intelligent Systems: A Team
Design Patterns Approach to the Bias Mitigation and Data Sharing Design
Problems [0.0]
Team Design Patterns (TDPs) describe successful and reusable configurations of design problems in which decisions have a moral component.
This thesis describes a set of solutions for two design problems in a medical HI system.
A survey was created to assess the usability of the patterns on their understandability, effectiveness, and generalizability.
arXiv Detail & Related papers (2021-02-16T17:09:43Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
We propose a novel method for Learning Binary Semantic Embedding (LBSE)
Based on the efficient and effective embedding, classification and retrieval are performed to provide interpretable computer-assisted diagnosis for histology images.
Experiments conducted on three benchmark datasets validate the superiority of LBSE under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:36:44Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z) - Self-organizing Democratized Learning: Towards Large-scale Distributed
Learning Systems [71.14339738190202]
democratized learning (Dem-AI) lays out a holistic philosophy with underlying principles for building large-scale distributed and democratized machine learning systems.
Inspired by Dem-AI philosophy, a novel distributed learning approach is proposed in this paper.
The proposed algorithms demonstrate better results in the generalization performance of learning models in agents compared to the conventional FL algorithms.
arXiv Detail & Related papers (2020-07-07T08:34:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.