Expressiveness of Commutative Quantum Circuits: A Probabilistic Approach
- URL: http://arxiv.org/abs/2404.19727v1
- Date: Tue, 30 Apr 2024 17:22:33 GMT
- Title: Expressiveness of Commutative Quantum Circuits: A Probabilistic Approach
- Authors: Jorge M. Ramirez, Elaine Wong, Caio Alves, Sarah Chehade, Ryan Bennink,
- Abstract summary: This study investigates the frame potential and expressiveness of commutative quantum circuits.
We express quantum expectation and pairwise fidelity as characteristic functions of random variables, and expressiveness as the recurrence probability of a random walk on a lattice.
- Score: 1.0864391406042209
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates the frame potential and expressiveness of commutative quantum circuits. Based on the Fourier series representation of these circuits, we express quantum expectation and pairwise fidelity as characteristic functions of random variables, and expressiveness as the recurrence probability of a random walk on a lattice. A central outcome of our work includes formulas to approximate the frame potential and expressiveness for any commutative quantum circuit, underpinned by convergence theorems in probability theory. We identify the lattice volume of the random walk as means to approximate expressiveness based on circuit architecture. In the specific case of commutative circuits involving Pauli-$Z$ rotations, we provide theoretical results relating expressiveness and circuit structure. Our probabilistic representation also provide means for bounding and approximately calculating the frame potential of a circuit through sampling methods.
Related papers
- Probabilistic Representation of Commutative Quantum Circuit Models [1.2733144214254712]
In commuting quantum circuits, the Fourier series of the pairwise fidelity can be expressed as the characteristic function of random variables.
We generalize this construction to any commuting set of Pauli operators.
arXiv Detail & Related papers (2024-10-24T22:02:44Z) - A Fourier analysis framework for approximate classical simulations of quantum circuits [0.0]
I present a framework that applies harmonic analysis of groups to circuits with a structure encoded by group parameters.
I also discuss generalisations to homogeneous spaces, qudit systems and a way to analyse random circuits via matrix coefficients of irreducible representations.
arXiv Detail & Related papers (2024-10-17T17:59:34Z) - Characterizing randomness in parameterized quantum circuits through expressibility and average entanglement [39.58317527488534]
Quantum Circuits (PQCs) are still not fully understood outside the scope of their principal application.
We analyse the generation of random states in PQCs under restrictions on the qubits connectivities.
We place a connection between how steep is the increase on the uniformity of the distribution of the generated states and the generation of entanglement.
arXiv Detail & Related papers (2024-05-03T17:32:55Z) - Unified framework for efficiently computable quantum circuits [0.0]
Quantum circuits consisting of Clifford and matchgates are two classes of circuits that are known to be efficiently simulatable on a classical computer.
We introduce a unified framework that shows in a transparent way the special structure that allows these circuits can be efficiently simulatable.
arXiv Detail & Related papers (2024-01-16T08:04:28Z) - A Complete Equational Theory for Quantum Circuits [58.720142291102135]
We introduce the first complete equational theory for quantum circuits.
Two circuits represent the same unitary map if and only if they can be transformed one into the other using the equations.
arXiv Detail & Related papers (2022-06-21T17:56:31Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Learnability of the output distributions of local quantum circuits [53.17490581210575]
We investigate, within two different oracle models, the learnability of quantum circuit Born machines.
We first show a negative result, that the output distributions of super-logarithmic depth Clifford circuits are not sample-efficiently learnable.
We show that in a more powerful oracle model, namely when directly given access to samples, the output distributions of local Clifford circuits are computationally efficiently PAC learnable.
arXiv Detail & Related papers (2021-10-11T18:00:20Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Random quantum circuits anti-concentrate in log depth [118.18170052022323]
We study the number of gates needed for the distribution over measurement outcomes for typical circuit instances to be anti-concentrated.
Our definition of anti-concentration is that the expected collision probability is only a constant factor larger than if the distribution were uniform.
In both the case where the gates are nearest-neighbor on a 1D ring and the case where gates are long-range, we show $O(n log(n)) gates are also sufficient.
arXiv Detail & Related papers (2020-11-24T18:44:57Z) - Theory of Ergodic Quantum Processes [0.0]
We consider general ergodic sequences of quantum channels with arbitrary correlations and non-negligible decoherence.
We compute the entanglement spectrum across any cut, by which the bipartite entanglement entropy can be computed exactly.
Other physical implications of our results are that most Floquet phases of matter are metastable and that noisy random circuits in the large depth limit will be trivial as far as their quantum entanglement is concerned.
arXiv Detail & Related papers (2020-04-29T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.