Steel Plate Fault Detection using the Fitness Dependent Optimizer and Neural Networks
- URL: http://arxiv.org/abs/2405.00006v1
- Date: Fri, 26 Jan 2024 18:30:03 GMT
- Title: Steel Plate Fault Detection using the Fitness Dependent Optimizer and Neural Networks
- Authors: Salar Farahmand-Tabar, Tarik A. Rashid,
- Abstract summary: This chapter aims at diagnosing and predicting the likelihood of steel plates developing faults using experimental text data.
Various machine learning methods are tested to classify steel plates as either faulty or non-faulty.
The FDO-based and CMLP models consistently achieved the best results, with 100% accuracy in all tested datasets.
- Score: 4.395397502990339
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting faults in steel plates is crucial for ensuring the safety and reliability of the structures and industrial equipment. Early detection of faults can prevent further damage and costly repairs. This chapter aims at diagnosing and predicting the likelihood of steel plates developing faults using experimental text data. Various machine learning methods such as GWO-based and FDO-based MLP and CMLP are tested to classify steel plates as either faulty or non-faulty. The experiments produced promising results for all models, with similar accuracy and performance. However, the FDO-based MLP and CMLP models consistently achieved the best results, with 100% accuracy in all tested datasets. The other models' outcomes varied from one experiment to another. The findings indicate that models that employed the FDO as a learning algorithm had the potential to achieve higher accuracy with a little longer runtime compared to other algorithms. In conclusion, early detection of faults in steel plates is critical for maintaining safety and reliability, and machine learning techniques can help predict and diagnose these faults accurately.
Related papers
- An Improved Fault Diagnosis Strategy for Induction Motors Using Weighted Probability Ensemble Deep Learning [1.438310481395707]
Early detection of faults in induction motors is crucial for ensuring uninterrupted operations in industrial settings.
WPEDL methodology is tailored for effectively diagnosing induction motor faults using high-dimensional data extracted from vibration and current features.
Our proposed model outperforms other models, achieving an accuracy of 98.89%.
arXiv Detail & Related papers (2024-12-24T08:02:44Z) - Resultant: Incremental Effectiveness on Likelihood for Unsupervised Out-of-Distribution Detection [63.93728560200819]
Unsupervised out-of-distribution (U-OOD) detection is to identify data samples with a detector trained solely on unlabeled in-distribution (ID) data.
Recent studies have developed various detectors based on DGMs to move beyond likelihood.
We apply two techniques for each direction, specifically post-hoc prior and dataset entropy-mutual calibration.
Experimental results demonstrate that the Resultant could be a new state-of-the-art U-OOD detector.
arXiv Detail & Related papers (2024-09-05T02:58:13Z) - Faster Metallic Surface Defect Detection Using Deep Learning with Channel Shuffling [0.0]
This study presents an improved real-time metallic surface defect detection model based on You Only Look Once (YOLOv5) specially designed for small networks.
The experimental results reveal that the improved proposed model outperforms other comparable models in terms of accuracy and detection time.
arXiv Detail & Related papers (2024-06-19T08:08:49Z) - Machine Learning for Pre/Post Flight UAV Rotor Defect Detection Using Vibration Analysis [54.550658461477106]
Unmanned Aerial Vehicles (UAVs) will be critical infrastructural components of future smart cities.
In order to operate efficiently, UAV reliability must be ensured by constant monitoring for faults and failures.
This paper leverages signal processing and Machine Learning methods to analyze the data of a comprehensive vibrational analysis to determine the presence of rotor blade defects.
arXiv Detail & Related papers (2024-04-24T13:50:27Z) - An Empirical Study of Uncertainty Estimation Techniques for Detecting
Drift in Data Streams [4.818865062632567]
This study conducts a comprehensive empirical evaluation of using uncertainty values as substitutes for error rates in detecting drifts.
We examine five uncertainty estimation methods in conjunction with the ADWIN detector across seven real-world datasets.
Our results reveal that while the SWAG method exhibits superior calibration, the overall accuracy in detecting drifts is not notably impacted by the choice of uncertainty estimation method.
arXiv Detail & Related papers (2023-11-22T13:17:55Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
We propose a Causal Disentanglement Hidden Markov model (CDHM) to learn the causality in the bearing fault mechanism.
Specifically, we make full use of the time-series data and progressively disentangle the vibration signal into fault-relevant and fault-irrelevant factors.
To expand the scope of the application, we adopt unsupervised domain adaptation to transfer the learned disentangled representations to other working environments.
arXiv Detail & Related papers (2023-08-06T05:58:45Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
We show that current out-of-distribution (OOD) detection algorithms for neural networks produce unsatisfactory results in a variety of OOD detection scenarios.
This paper studies how such "hard" OOD scenarios can benefit from adjusting the detection method after observing a batch of the test data.
We propose a novel method that uses an artificial labeling scheme for the test data and regularization to obtain ensembles of models that produce contradictory predictions only on the OOD samples in a test batch.
arXiv Detail & Related papers (2020-12-10T16:55:13Z) - Few-Shot Bearing Fault Diagnosis Based on Model-Agnostic Meta-Learning [3.8015092217142223]
We propose a few-shot learning framework for bearing fault diagnosis based on model-agnostic meta-learning (MAML)
Case studies show that the proposed framework achieves an overall accuracy up to 25% higher than a Siamese network-based benchmark study.
arXiv Detail & Related papers (2020-07-25T04:03:18Z) - Are Ensemble Classifiers Powerful Enough for the Detection and Diagnosis
of Intermediate-Severity Faults? [9.1591191545173]
Intermediate-Severity (IS) faults present milder symptoms compared to severe faults.
The lack of IS fault examples in the training data can pose severe risks to Fault Detection and Diagnosis (FDD) methods.
We discuss how to design more effective ensemble models for detecting and diagnosing IS faults.
arXiv Detail & Related papers (2020-07-07T02:05:04Z) - NADS: Neural Architecture Distribution Search for Uncertainty Awareness [79.18710225716791]
Machine learning (ML) systems often encounter Out-of-Distribution (OoD) errors when dealing with testing data coming from a distribution different from training data.
Existing OoD detection approaches are prone to errors and even sometimes assign higher likelihoods to OoD samples.
We propose Neural Architecture Distribution Search (NADS) to identify common building blocks among all uncertainty-aware architectures.
arXiv Detail & Related papers (2020-06-11T17:39:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.