論文の概要: BrainWave: A Brain Signal Foundation Model for Clinical Applications
- arxiv url: http://arxiv.org/abs/2402.10251v5
- Date: Thu, 12 Sep 2024 06:35:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 22:02:48.225467
- Title: BrainWave: A Brain Signal Foundation Model for Clinical Applications
- Title(参考訳): BrainWave:臨床応用のための脳信号基礎モデル
- Authors: Zhizhang Yuan, Fanqi Shen, Meng Li, Yuguo Yu, Chenhao Tan, Yang Yang,
- Abstract要約: 我々は、侵襲的および非侵襲的なニューラル記録のための最初の基礎モデルであるBrainWaveを提示する。
ブレインウェーブは、約16,000人の個人から4万時間以上の電気的脳記録(13.79TBのデータ)を事前訓練した。
分析の結果、BrainWaveは他の競合モデルよりも優れており、神経疾患の診断と診断における最先端のパフォーマンスを一貫して達成していることがわかった。
- 参考スコア(独自算出の注目度): 21.624743680602744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural electrical activity is fundamental to brain function, underlying a range of cognitive and behavioral processes, including movement, perception, decision-making, and consciousness. Abnormal patterns of neural signaling often indicate the presence of underlying brain diseases. The variability among individuals, the diverse array of clinical symptoms from various brain disorders, and the limited availability of diagnostic classifications, have posed significant barriers to formulating reliable model of neural signals for diverse application contexts. Here, we present BrainWave, the first foundation model for both invasive and non-invasive neural recordings, pretrained on more than 40,000 hours of electrical brain recordings (13.79 TB of data) from approximately 16,000 individuals. Our analysis show that BrainWave outperforms all other competing models and consistently achieves state-of-the-art performance in the diagnosis and identification of neurological disorders. We also demonstrate robust capabilities of BrainWave in enabling zero-shot transfer learning across varying recording conditions and brain diseases, as well as few-shot classification without fine-tuning, suggesting that BrainWave learns highly generalizable representations of neural signals. We hence believe that open-sourcing BrainWave will facilitate a wide range of clinical applications in medicine, paving the way for AI-driven approaches to investigate brain disorders and advance neuroscience research.
- Abstract(参考訳): 神経電気活動は脳機能の基本であり、運動、知覚、意思決定、意識を含む様々な認知的および行動的プロセスの基礎となっている。
神経シグナルの異常パターンは、しばしば基礎となる脳疾患の存在を示す。
個人間の変動、様々な脳疾患による多様な臨床症状、診断分類の可用性の限界は、様々な応用状況において信頼できる神経信号モデルを形成する上で重要な障壁となっている。
ここでは、約16,000人から4万時間以上の電気的脳波記録(データ13.79TB)を事前訓練した、侵襲的および非侵襲的な神経記録のための最初の基礎モデルであるBrainWaveを紹介する。
分析の結果、BrainWaveは他の競合モデルよりも優れており、神経疾患の診断と診断における最先端のパフォーマンスを一貫して達成していることがわかった。
我々はまた、ブレインウェーブが様々な記録条件や脳疾患にまたがるゼロショットトランスファー学習を可能にし、微調整をせずに少数ショットの分類が可能であることを実証し、BrainWaveが神経信号の高度に一般化可能な表現を学習していることを示唆した。
そこで我々は、BrainWaveをオープンソース化することで、医学における幅広い臨床応用が促進され、AIによる脳障害の調査や神経科学研究の進展への道が開けると考えている。
関連論文リスト
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - NeuroBind: Towards Unified Multimodal Representations for Neural Signals [20.02503060795981]
脳波、fMRI、カルシウムイメージング、スパイキングデータを含む複数の脳信号タイプを統一する表現であるNeuroBindを提案する。
このアプローチは、神経科学研究の進展、AIシステムの改善、神経補綴学と脳-コンピュータインターフェースの開発において大きな可能性を秘めている。
論文 参考訳(メタデータ) (2024-07-19T04:42:52Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
本稿では,脳波を連続的にモデル化するBrainODEというモデルを提案する。
遅延初期値とニューラルODE関数を不規則な時系列から学習することにより、BrainODEは任意の時点の脳信号を効果的に再構築する。
論文 参考訳(メタデータ) (2024-04-30T10:53:30Z) - Personalized identification, prediction, and stimulation of neural
oscillations via data-driven models of epileptic network dynamics [0.0]
脳波データから直接ててんかん性ネットワークダイナミクスの予測モデルを抽出するフレームワークを開発する。
本研究では,周期運転下での脳ネットワーク力学モデル間の直接対応を構築することができることを示す。
このことは、周期的な脳刺激がてんかん性ネットワークの病態状態を正常な機能的脳状態へと導くことを示唆している。
論文 参考訳(メタデータ) (2023-10-20T13:21:31Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - MBrain: A Multi-channel Self-Supervised Learning Framework for Brain
Signals [7.682832730967219]
本稿では,SEEGデータとEEGデータのいずれかを事前学習できる脳信号の自己教師型学習フレームワークについて検討する。
そこで我々は,異なるチャネル間の空間的および時間的相関を暗黙的に学習するために,MBrainを提案する。
我々のモデルは、最先端のSSLおよび教師なしモデルよりも優れており、臨床に展開する能力を持っている。
論文 参考訳(メタデータ) (2023-06-15T09:14:26Z) - BrainNet: Epileptic Wave Detection from SEEG with Hierarchical Graph
Diffusion Learning [21.689503325383253]
実世界のSEEGデータセットにおけるてんかん性波を検出するための,最初のデータ駆動型研究を提案する。
臨床的には、てんかん波の活動は脳の異なる領域間で伝播していると考えられている。
各患者に対して正確なてんかん原性ネットワークをどうやって抽出するかという問題は、神経科学の分野では未解決の問題のままである。
論文 参考訳(メタデータ) (2023-06-15T08:29:10Z) - Deep learning reveals the common spectrum underlying multiple brain
disorders in youth and elders from brain functional networks [53.257804915263165]
ヒトの初期および後期の脳障害は、脳機能における病理学的変化を共有する可能性がある。
病理的共通性に関する神経画像データによる重要な証拠はいまだ発見されていない。
多地点機能磁気共鳴画像データを用いたディープラーニングモデルを構築し、健康的な制御から5つの異なる脳障害を分類する。
論文 参考訳(メタデータ) (2023-02-23T09:22:05Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
脳内では、情報はコード化され、伝達され、行動を伝えるために使用される。
ニューロモルフィック回路は、脳内のニューロンの集団が使用するものと互換性のある方法で情報を符号化する必要がある。
論文 参考訳(メタデータ) (2022-12-08T15:16:04Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
音声ブックを聴く被験者の機能的磁気共鳴イメージングの時間軸予測に及ぼすテスト損失,トレーニングコーパス,モデルアーキテクチャの影響について検討した。
各モデルの訓練されていないバージョンは、同じ単語をまたいだ脳反応の類似性を捉えることで、脳内のかなりの量のシグナルをすでに説明していることがわかりました。
ニューラル言語モデルを用いたヒューマン・ランゲージ・システムの説明を目的とした今後の研究の実践を提案する。
論文 参考訳(メタデータ) (2022-07-07T15:37:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。