Data-Driven Permissible Safe Control with Barrier Certificates
- URL: http://arxiv.org/abs/2405.00136v2
- Date: Sun, 5 May 2024 02:41:47 GMT
- Title: Data-Driven Permissible Safe Control with Barrier Certificates
- Authors: Rayan Mazouz, John Skovbekk, Frederik Baymler Mathiesen, Eric Frew, Luca Laurenti, Morteza Lahijanian,
- Abstract summary: This paper introduces a method of identifying a maximal set of safe strategies from data for systems with unknown dynamics.
Case studies show that increasing the size of the dataset for learning the system grows the permissible strategy set.
- Score: 11.96747040086603
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a method of identifying a maximal set of safe strategies from data for stochastic systems with unknown dynamics using barrier certificates. The first step is learning the dynamics of the system via Gaussian process (GP) regression and obtaining probabilistic errors for this estimate. Then, we develop an algorithm for constructing piecewise stochastic barrier functions to find a maximal permissible strategy set using the learned GP model, which is based on sequentially pruning the worst controls until a maximal set is identified. The permissible strategies are guaranteed to maintain probabilistic safety for the true system. This is especially important for learning-enabled systems, because a rich strategy space enables additional data collection and complex behaviors while remaining safe. Case studies on linear and nonlinear systems demonstrate that increasing the size of the dataset for learning the system grows the permissible strategy set.
Related papers
- Data-Driven Distributionally Robust Safety Verification Using Barrier Certificates and Conditional Mean Embeddings [0.24578723416255752]
We develop scalable formal verification algorithms without shifting the problem to unrealistic assumptions.
In a pursuit of developing scalable formal verification algorithms without shifting the problem to unrealistic assumptions, we employ the concept of barrier certificates.
We show how to solve the resulting program efficiently using sum-of-squares optimization and a Gaussian process envelope.
arXiv Detail & Related papers (2024-03-15T17:32:02Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Efficient falsification approach for autonomous vehicle validation using
a parameter optimisation technique based on reinforcement learning [6.198523595657983]
The widescale deployment of Autonomous Vehicles (AV) appears to be imminent despite many safety challenges that are yet to be resolved.
The uncertainties in the behaviour of the traffic participants and the dynamic world cause reactions in advanced autonomous systems.
This paper presents an efficient falsification method to evaluate the System Under Test.
arXiv Detail & Related papers (2020-11-16T02:56:13Z) - Learning Hybrid Control Barrier Functions from Data [66.37785052099423]
Motivated by the lack of systematic tools to obtain safe control laws for hybrid systems, we propose an optimization-based framework for learning certifiably safe control laws from data.
In particular, we assume a setting in which the system dynamics are known and in which data exhibiting safe system behavior is available.
arXiv Detail & Related papers (2020-11-08T23:55:02Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
Learning-based control algorithms require data collection with abundant supervision for training.
We present a new approach for optimal motion planning with safe exploration that integrates chance-constrained optimal control with dynamics learning and feedback control.
arXiv Detail & Related papers (2020-05-09T05:57:43Z) - Learning Control Barrier Functions from Expert Demonstrations [69.23675822701357]
We propose a learning based approach to safe controller synthesis based on control barrier functions (CBFs)
We analyze an optimization-based approach to learning a CBF that enjoys provable safety guarantees under suitable Lipschitz assumptions on the underlying dynamical system.
To the best of our knowledge, these are the first results that learn provably safe control barrier functions from data.
arXiv Detail & Related papers (2020-04-07T12:29:06Z) - Deep Learning Tubes for Tube MPC [21.84264471259777]
We use deep learning to obtain expressive and flexible models of how trajectories behave.
We then use for nonlinear Model Predictive Control (MPC)
We present experiments in simulation on a nonlinear quadrotor system.
arXiv Detail & Related papers (2020-02-05T00:32:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.