Finite-Sample-Based Reachability for Safe Control with Gaussian Process Dynamics
- URL: http://arxiv.org/abs/2505.07594v1
- Date: Mon, 12 May 2025 14:20:20 GMT
- Title: Finite-Sample-Based Reachability for Safe Control with Gaussian Process Dynamics
- Authors: Manish Prajapat, Johannes Köhler, Amon Lahr, Andreas Krause, Melanie N. Zeilinger,
- Abstract summary: We present a sampling-based framework that efficiently propagates the model's uncertainty while avoiding conservatism.<n>We show that our method highlights accurate reachable set over-approximation and safe closed-loop performance.
- Score: 35.79393879150088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian Process (GP) regression is shown to be effective for learning unknown dynamics, enabling efficient and safety-aware control strategies across diverse applications. However, existing GP-based model predictive control (GP-MPC) methods either rely on approximations, thus lacking guarantees, or are overly conservative, which limits their practical utility. To close this gap, we present a sampling-based framework that efficiently propagates the model's epistemic uncertainty while avoiding conservatism. We establish a novel sample complexity result that enables the construction of a reachable set using a finite number of dynamics functions sampled from the GP posterior. Building on this, we design a sampling-based GP-MPC scheme that is recursively feasible and guarantees closed-loop safety and stability with high probability. Finally, we showcase the effectiveness of our method on two numerical examples, highlighting accurate reachable set over-approximation and safe closed-loop performance.
Related papers
- Safe Beyond the Horizon: Efficient Sampling-based MPC with Neural Control Barrier Functions [23.693610702522236]
A common problem when using model predictive control (MPC) in practice is the satisfaction of safety specifications beyond the prediction horizon.<n>We propose a new sampling strategy that greatly reduces the variance of the estimated optimal control.<n>The resulting Neural Shield-VIMPC controller yields substantial safety improvements compared to existing sampling-based MPC controllers.
arXiv Detail & Related papers (2025-02-20T19:59:11Z) - Towards safe and tractable Gaussian process-based MPC: Efficient sampling within a sequential quadratic programming framework [35.79393879150088]
We propose a robust GP-MPC formulation that guarantees constraint satisfaction with high probability.
We highlight the improved reachable set approximation compared to existing methods, as well as real-time feasible times.
arXiv Detail & Related papers (2024-09-13T08:15:20Z) - Real-Time Adaptive Safety-Critical Control with Gaussian Processes in
High-Order Uncertain Models [14.790031018404942]
This paper presents an adaptive online learning framework for systems with uncertain parameters.
We first integrate a forgetting factor to refine a variational sparse GP algorithm.
In the second phase, we propose a safety filter based on high-order control barrier functions.
arXiv Detail & Related papers (2024-02-29T08:25:32Z) - Probabilistic Reach-Avoid for Bayesian Neural Networks [71.67052234622781]
We show that an optimal synthesis algorithm can provide more than a four-fold increase in the number of certifiable states.
The algorithm is able to provide more than a three-fold increase in the average guaranteed reach-avoid probability.
arXiv Detail & Related papers (2023-10-03T10:52:21Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Robust and Adaptive Temporal-Difference Learning Using An Ensemble of
Gaussian Processes [70.80716221080118]
The paper takes a generative perspective on policy evaluation via temporal-difference (TD) learning.
The OS-GPTD approach is developed to estimate the value function for a given policy by observing a sequence of state-reward pairs.
To alleviate the limited expressiveness associated with a single fixed kernel, a weighted ensemble (E) of GP priors is employed to yield an alternative scheme.
arXiv Detail & Related papers (2021-12-01T23:15:09Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Learning Control Barrier Functions from Expert Demonstrations [69.23675822701357]
We propose a learning based approach to safe controller synthesis based on control barrier functions (CBFs)
We analyze an optimization-based approach to learning a CBF that enjoys provable safety guarantees under suitable Lipschitz assumptions on the underlying dynamical system.
To the best of our knowledge, these are the first results that learn provably safe control barrier functions from data.
arXiv Detail & Related papers (2020-04-07T12:29:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.