SPAFIT: Stratified Progressive Adaptation Fine-tuning for Pre-trained Large Language Models
- URL: http://arxiv.org/abs/2405.00201v1
- Date: Tue, 30 Apr 2024 21:07:32 GMT
- Title: SPAFIT: Stratified Progressive Adaptation Fine-tuning for Pre-trained Large Language Models
- Authors: Samir Arora, Liangliang Wang,
- Abstract summary: Full fine-tuning is a popular approach to adapt Transformer-based pre-trained large language models to a specific downstream task.
We propose Stratified Progressive Adaptation Fine-tuning (SPAFIT) based on the localization of different types of linguistic knowledge.
Our experiments, conducted on nine tasks from the GLUE benchmark, show that our proposed SPAFIT method outperforms other PEFT methods.
- Score: 1.2263658159556594
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Full fine-tuning is a popular approach to adapt Transformer-based pre-trained large language models to a specific downstream task. However, the substantial requirements for computational power and storage have discouraged its widespread use. Moreover, increasing evidence of catastrophic forgetting and overparameterization in the Transformer architecture has motivated researchers to seek more efficient fine-tuning (PEFT) methods. Commonly known parameter-efficient fine-tuning methods like LoRA and BitFit are typically applied across all layers of the model. We propose a PEFT method, called Stratified Progressive Adaptation Fine-tuning (SPAFIT), based on the localization of different types of linguistic knowledge to specific layers of the model. Our experiments, conducted on nine tasks from the GLUE benchmark, show that our proposed SPAFIT method outperforms other PEFT methods while fine-tuning only a fraction of the parameters adjusted by other methods.
Related papers
- LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method that effectively adapts large pre-trained models for downstream tasks.
We propose a novel approach that employs a low rank tensor parametrization for model updates.
Our method is both efficient and effective for fine-tuning large language models, achieving a substantial reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.
We propose a novel model fine-tuning method to make full use of these ineffective parameters.
Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFT is a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters.
Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks.
Forecast-FT further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods.
arXiv Detail & Related papers (2024-07-28T19:18:59Z) - Parameter-Efficient Fine-Tuning With Adapters [5.948206235442328]
This research introduces a novel adaptation method utilizing the UniPELT framework as a base.
Our method employs adapters, which enable efficient transfer of pretrained models to new tasks with minimal retraining of the base model parameters.
arXiv Detail & Related papers (2024-05-09T01:40:38Z) - Bayesian Parameter-Efficient Fine-Tuning for Overcoming Catastrophic Forgetting [10.559392015748989]
We show that catastrophic forgetting can be overcome by our methods without degrading the fine-tuning performance.
Our results demonstrate that using the Kronecker-factored approximation produces a better preservation of the pre-training knowledge than the diagonal ones.
arXiv Detail & Related papers (2024-02-19T15:26:19Z) - Sparse is Enough in Fine-tuning Pre-trained Large Language Models [98.46493578509039]
We propose a gradient-based sparse fine-tuning algorithm, named Sparse Increment Fine-Tuning (SIFT)
We validate its effectiveness on a range of tasks including the GLUE Benchmark and Instruction-tuning.
arXiv Detail & Related papers (2023-12-19T06:06:30Z) - SLoRA: Federated Parameter Efficient Fine-Tuning of Language Models [28.764782216513037]
Federated Learning (FL) can benefit from distributed and private data of the FL edge clients for fine-tuning.
We propose a method called SLoRA, which overcomes the key limitations of LoRA in high heterogeneous data scenarios.
Our experimental results demonstrate that SLoRA achieves performance comparable to full fine-tuning.
arXiv Detail & Related papers (2023-08-12T10:33:57Z) - Empirical Analysis of the Strengths and Weaknesses of PEFT Techniques
for LLMs [1.867982979635437]
We provide a benchmark of various PEFT techniques and evaluate model performance across different data scales.
Contrary to popular belief, we empirically prove that PEFT techniques converge slower than full tuning in low data scenarios.
We further optimize these PEFT techniques by selectively choosing which parts of the model to train, and find that these techniques can be applied with significantly fewer parameters.
arXiv Detail & Related papers (2023-04-28T17:39:49Z) - Rethinking Efficient Tuning Methods from a Unified Perspective [34.67645496324432]
We revisit the design paradigm of PETL and derive a unified framework U-Tuning for parameter-efficient transfer learning.
The U-Tuning framework can simultaneously encompass existing methods and derive new approaches for parameter-efficient transfer learning.
arXiv Detail & Related papers (2023-03-01T17:38:03Z) - Scaling & Shifting Your Features: A New Baseline for Efficient Model
Tuning [126.84770886628833]
Existing finetuning methods either tune all parameters of the pretrained model (full finetuning) or only tune the last linear layer (linear probing)
We propose a new parameter-efficient finetuning method termed as SSF, representing that researchers only need to Scale and Shift the deep Features extracted by a pre-trained model to catch up with the performance full finetuning.
arXiv Detail & Related papers (2022-10-17T08:14:49Z) - Towards a Unified View of Parameter-Efficient Transfer Learning [108.94786930869473]
Fine-tuning large pre-trained language models on downstream tasks has become the de-facto learning paradigm in NLP.
Recent work has proposed a variety of parameter-efficient transfer learning methods that only fine-tune a small number of (extra) parameters to attain strong performance.
We break down the design of state-of-the-art parameter-efficient transfer learning methods and present a unified framework that establishes connections between them.
arXiv Detail & Related papers (2021-10-08T20:22:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.