Synthetic Face Datasets Generation via Latent Space Exploration from Brownian Identity Diffusion
- URL: http://arxiv.org/abs/2405.00228v1
- Date: Tue, 30 Apr 2024 22:32:02 GMT
- Title: Synthetic Face Datasets Generation via Latent Space Exploration from Brownian Identity Diffusion
- Authors: David Geissbühler, Hatef Otroshi Shahreza, Sébastien Marcel,
- Abstract summary: Face Recognition (FR) models are trained on large-scale datasets, which have privacy and ethical concerns.
Lately, the use of synthetic data to complement or replace genuine data for the training of FR models has been proposed.
We introduce a new method, inspired by the physical motion of soft particles subjected to Brownian forces, allowing us to sample identities in a latent space under various constraints.
With this in hands, we generate several face datasets and benchmark them by training FR models, showing that data generated with our method exceeds the performance of previously GAN-based datasets and achieves competitive performance with state-of-the-
- Score: 20.352548473293993
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Face Recognition (FR) models are trained on large-scale datasets, which have privacy and ethical concerns. Lately, the use of synthetic data to complement or replace genuine data for the training of FR models has been proposed. While promising results have been obtained, it still remains unclear if generative models can yield diverse enough data for such tasks. In this work, we introduce a new method, inspired by the physical motion of soft particles subjected to stochastic Brownian forces, allowing us to sample identities distributions in a latent space under various constraints. With this in hands, we generate several face datasets and benchmark them by training FR models, showing that data generated with our method exceeds the performance of previously GAN-based datasets and achieves competitive performance with state-of-the-art diffusion-based synthetic datasets. We also show that this method can be used to mitigate leakage from the generator's training set and explore the ability of generative models to generate data beyond it.
Related papers
- Constrained Diffusion Models via Dual Training [80.03953599062365]
Diffusion processes are prone to generating samples that reflect biases in a training dataset.
We develop constrained diffusion models by imposing diffusion constraints based on desired distributions.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Distribution-Aware Data Expansion with Diffusion Models [55.979857976023695]
We propose DistDiff, a training-free data expansion framework based on the distribution-aware diffusion model.
DistDiff consistently enhances accuracy across a diverse range of datasets compared to models trained solely on original data.
arXiv Detail & Related papers (2024-03-11T14:07:53Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Private Synthetic Data Meets Ensemble Learning [15.425653946755025]
When machine learning models are trained on synthetic data and then deployed on real data, there is often a performance drop.
We introduce a new ensemble strategy for training downstream models, with the goal of enhancing their performance when used on real data.
arXiv Detail & Related papers (2023-10-15T04:24:42Z) - On the Stability of Iterative Retraining of Generative Models on their own Data [56.153542044045224]
We study the impact of training generative models on mixed datasets.
We first prove the stability of iterative training under the condition that the initial generative models approximate the data distribution well enough.
We empirically validate our theory on both synthetic and natural images by iteratively training normalizing flows and state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-09-30T16:41:04Z) - Phoenix: A Federated Generative Diffusion Model [6.09170287691728]
Training generative models on large centralized datasets can pose challenges in terms of data privacy, security, and accessibility.
This paper proposes a novel method for training a Denoising Diffusion Probabilistic Model (DDPM) across multiple data sources using Federated Learning (FL) techniques.
arXiv Detail & Related papers (2023-06-07T01:43:09Z) - Phased Data Augmentation for Training a Likelihood-Based Generative Model with Limited Data [0.0]
Generative models excel in creating realistic images, yet their dependency on extensive datasets for training presents significant challenges.
Current data-efficient methods largely focus on GAN architectures, leaving a gap in training other types of generative models.
"phased data augmentation" is a novel technique that addresses this gap by optimizing training in limited data scenarios without altering the inherent data distribution.
arXiv Detail & Related papers (2023-05-22T03:38:59Z) - Private Gradient Estimation is Useful for Generative Modeling [25.777591229903596]
We present a new private generative modeling approach where samples are generated via Hamiltonian dynamics with gradients of the private dataset estimated by a well-trained network.
Our model is able to generate data with a resolution of 256x256.
arXiv Detail & Related papers (2023-05-18T02:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.