Enhancing Domain Diversity in Synthetic Data Face Recognition with Dataset Fusion
- URL: http://arxiv.org/abs/2507.16790v1
- Date: Tue, 22 Jul 2025 17:36:48 GMT
- Title: Enhancing Domain Diversity in Synthetic Data Face Recognition with Dataset Fusion
- Authors: Anjith George, Sebastien Marcel,
- Abstract summary: We propose a solution by combining two state-of-the-art synthetic face datasets generated using architecturally distinct backbones.<n>This fusion reduces model-specific artifacts, enhances diversity in pose, lighting, and demographics, and implicitly regularizes the face recognition model by emphasizing identity-relevant features.
- Score: 4.910937238451485
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: While the accuracy of face recognition systems has improved significantly in recent years, the datasets used to train these models are often collected through web crawling without the explicit consent of users, raising ethical and privacy concerns. To address this, many recent approaches have explored the use of synthetic data for training face recognition models. However, these models typically underperform compared to those trained on real-world data. A common limitation is that a single generator model is often used to create the entire synthetic dataset, leading to model-specific artifacts that may cause overfitting to the generator's inherent biases and artifacts. In this work, we propose a solution by combining two state-of-the-art synthetic face datasets generated using architecturally distinct backbones. This fusion reduces model-specific artifacts, enhances diversity in pose, lighting, and demographics, and implicitly regularizes the face recognition model by emphasizing identity-relevant features. We evaluate the performance of models trained on this combined dataset using standard face recognition benchmarks and demonstrate that our approach achieves superior performance across many of these benchmarks.
Related papers
- Second FRCSyn-onGoing: Winning Solutions and Post-Challenge Analysis to Improve Face Recognition with Synthetic Data [104.30479583607918]
2nd FRCSyn-onGoing challenge is based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024.<n>We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition.
arXiv Detail & Related papers (2024-12-02T11:12:01Z) - HyperFace: Generating Synthetic Face Recognition Datasets by Exploring Face Embedding Hypersphere [22.8742248559748]
Face recognition datasets are often collected by crawling Internet and without individuals' consents, raising ethical and privacy concerns.<n> Generating synthetic datasets for training face recognition models has emerged as a promising alternative.<n>We propose a new synthetic dataset generation approach, called HyperFace.
arXiv Detail & Related papers (2024-11-13T09:42:12Z) - Digi2Real: Bridging the Realism Gap in Synthetic Data Face Recognition via Foundation Models [4.910937238451485]
We introduce a novel framework for realism transfer aimed at enhancing the realism of synthetically generated face images.<n>By integrating the controllable aspects of the graphics pipeline with our realism enhancement technique, we generate a large amount of realistic variations.
arXiv Detail & Related papers (2024-11-04T15:42:22Z) - Unveiling Synthetic Faces: How Synthetic Datasets Can Expose Real Identities [22.8742248559748]
We show that in 6 state-of-the-art synthetic face recognition datasets, several samples from the original real dataset are leaked.
This paper is the first work which shows the leakage from training data of generator models into the generated synthetic face recognition datasets.
arXiv Detail & Related papers (2024-10-31T15:17:14Z) - Synthetic Face Datasets Generation via Latent Space Exploration from Brownian Identity Diffusion [20.352548473293993]
We introduce three complementary algorithms, called Langevin, Dispersion, and DisCo, aimed at generating large synthetic face datasets.<n>With this in hands, we generate several face datasets and benchmark them by training face recognition models, showing that data generated with our method exceeds the performance of previously GAN-based datasets.<n>While diffusion models are shown to memorize training data, we prevent leakage in our new synthetic datasets, paving the way for more responsible synthetic datasets.
arXiv Detail & Related papers (2024-04-30T22:32:02Z) - SDFR: Synthetic Data for Face Recognition Competition [51.9134406629509]
Large-scale face recognition datasets are collected by crawling the Internet and without individuals' consent, raising legal, ethical, and privacy concerns.
Recently several works proposed generating synthetic face recognition datasets to mitigate concerns in web-crawled face recognition datasets.
This paper presents the summary of the Synthetic Data for Face Recognition (SDFR) Competition held in conjunction with the 18th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024)
The SDFR competition was split into two tasks, allowing participants to train face recognition systems using new synthetic datasets and/or existing ones.
arXiv Detail & Related papers (2024-04-06T10:30:31Z) - If It's Not Enough, Make It So: Reducing Authentic Data Demand in Face Recognition through Synthetic Faces [16.977459035497162]
Large face datasets are primarily sourced from web-based images, lacking explicit user consent.
In this paper, we examine whether and how synthetic face data can be used to train effective face recognition models.
arXiv Detail & Related papers (2024-04-04T15:45:25Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
The rapid advancement of photorealistic generators has reached a critical juncture where the discrepancy between authentic and manipulated images is increasingly indistinguishable.
Although there have been a number of publicly available face forgery datasets, the forgery faces are mostly generated using GAN-based synthesis technology.
We propose a large-scale, diverse, and fine-grained high-fidelity dataset, namely GenFace, to facilitate the advancement of deepfake detection.
arXiv Detail & Related papers (2024-02-03T03:13:50Z) - On the Stability of Iterative Retraining of Generative Models on their own Data [56.153542044045224]
We study the impact of training generative models on mixed datasets.
We first prove the stability of iterative training under the condition that the initial generative models approximate the data distribution well enough.
We empirically validate our theory on both synthetic and natural images by iteratively training normalizing flows and state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-09-30T16:41:04Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
We study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks.
We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks.
arXiv Detail & Related papers (2022-10-14T06:54:24Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
We devise the SynFace with identity mixup (IM) and domain mixup (DM) to mitigate the performance gap.
We also perform a systematically empirical analysis on synthetic face images to provide some insights on how to effectively utilize synthetic data for face recognition.
arXiv Detail & Related papers (2021-08-18T03:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.