論文の概要: Enhanced Language Model Truthfulness with Learnable Intervention and Uncertainty Expression
- arxiv url: http://arxiv.org/abs/2405.00301v2
- Date: Thu, 6 Jun 2024 07:32:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 20:33:09.139995
- Title: Enhanced Language Model Truthfulness with Learnable Intervention and Uncertainty Expression
- Title(参考訳): 学習可能な介入と不確実性表現による言語モデル真性の向上
- Authors: Farima Fatahi Bayat, Xin Liu, H. V. Jagadish, Lu Wang,
- Abstract要約: 大きな言語モデル(LLM)は長文で一貫性のあるテキストを生成することができるが、事実を幻覚させることが多い。
真性最適化のための学習可能なインターベンション手法であるLITOを提案する。
複数のLLMと質問応答データセットの実験は、LITOがタスク精度を維持しながら真理性を改善することを示した。
- 参考スコア(独自算出の注目度): 19.69104070561701
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) can generate long-form and coherent text, yet they often hallucinate facts, which undermines their reliability. To mitigate this issue, inference-time methods steer LLM representations toward the "truthful directions" previously learned for truth elicitation. However, applying these truthful directions with the same intensity fails to generalize across different query contexts. We propose LITO, a Learnable Intervention method for Truthfulness Optimization that automatically identifies the optimal intervention intensity tailored to each specific context. LITO explores a sequence of model generations based on increasing levels of intervention intensities. It selects the most accurate response or refuses to answer when the predictions are highly uncertain. Experiments on multiple LLMs and question-answering datasets demonstrate that LITO improves truthfulness while preserving task accuracy. The adaptive nature of LITO counters the limitations of one-size-fits-all intervention methods, maximizing truthfulness by reflecting the model's internal knowledge only when it is confident. Our code is available at https://github.com/launchnlp/LITO.
- Abstract(参考訳): 大きな言語モデル(LLM)は長文で一貫性のあるテキストを生成することができるが、事実を幻覚させることが多く、信頼性を損なう。
この問題を緩和するために、推論時手法は、以前に真理を導き出すために学んだ「真理な方向」に向けてLLM表現を操る。
しかし、これらの真正な方向を同じ強度で適用しても、異なるクエリコンテキストにまたがって一般化することができない。
本稿では,それぞれのコンテキストに合わせて最適な介入強度を自動的に識別する,真理性最適化のための学習可能なインターベンション手法LITOを提案する。
LITOは、介入強度の増大に基づくモデル世代を探索する。
予測が極めて不確実な場合には、最も正確な応答を選択するか、答えを拒否する。
複数のLLMと質問応答データセットの実験は、LITOがタスク精度を維持しながら真理性を改善することを示した。
LITOの適応性は、一大の介入方法の限界に対処し、モデルの内部知識を自信のある場合にのみ反映することで真理を最大化する。
私たちのコードはhttps://github.com/ Launchnlp/LITO.comで利用可能です。
関連論文リスト
- Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - LLMs' Reading Comprehension Is Affected by Parametric Knowledge and Struggles with Hypothetical Statements [59.71218039095155]
言語モデルの自然言語理解(NLU)能力を評価するための主要な手段として、読解理解(RC)があげられる。
文脈がモデルの内部知識と一致している場合、モデルの回答がコンテキスト理解に由来するのか、あるいは内部情報から生じるのかを識別することは困難である。
この問題に対処するために、架空の事実や実体に基づいて、想像上のデータにRCを使うことを提案する。
論文 参考訳(メタデータ) (2024-04-09T13:08:56Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - Distinguishing the Knowable from the Unknowable with Language Models [15.471748481627143]
地中真理確率の欠如において、与えられた不確実性を解き放つために、より大きなモデルが地中真理の代用として現れるような設定を探索する。
凍結, 事前訓練されたモデルの埋め込みを訓練した小さな線形プローブが, トークンレベルでより大きなモデルがより自信を持つようになる時期を正確に予測することを示した。
我々は,同じタスクにおいて非自明な精度を実現する,完全に教師なしの手法を提案する。
論文 参考訳(メタデータ) (2024-02-05T22:22:49Z) - GRATH: Gradual Self-Truthifying for Large Language Models [63.502835648056305]
GRATH(Gradual Self-Truthifying)は,大規模言語モデル(LLM)の真偽性を高めるためのポストプロセッシング手法である。
GRATHは、反復的に真理データを洗練し、モデルを更新する。
GRATHはTruthfulQAの最先端性能を達成し、MC1の精度は54.71%、MC2の精度は69.10%であり、70B-LLMよりも高い。
論文 参考訳(メタデータ) (2024-01-22T19:00:08Z) - DoLa: Decoding by Contrasting Layers Improves Factuality in Large
Language Models [79.01926242857613]
大型言語モデル(LLM)は幻覚を起こす傾向があり、事前訓練中に見られる事実から逸脱した内容を生成する。
事前学習したLLMによる幻覚を低減するための簡単な復号法を提案する。
コントラスティング・レイヤ(DoLa)アプローチによるこのデコーディングは,事実知識をよりよく提示し,誤った事実の生成を減らすことができる。
論文 参考訳(メタデータ) (2023-09-07T17:45:31Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Pareto Optimal Learning for Estimating Large Language Model Errors [12.21899680905672]
大規模言語モデル(LLM)は多くのアプリケーションで印象的な能力を示している。
複数の情報ソースを統合することで,LSM応答における誤り確率を推定するリスクスコアを生成する手法を提案する。
論文 参考訳(メタデータ) (2023-06-28T21:11:15Z) - The Internal State of an LLM Knows When It's Lying [18.886091925252174]
大規模言語モデル(LLM)は、様々なタスクにおいて例外的なパフォーマンスを示している。
彼らの最も顕著な欠点の1つは、自信のあるトーンで不正確または偽の情報を生成することである。
我々は, LLMの内部状態が文の真偽を明らかにするのに有効であることを示す証拠を提供する。
論文 参考訳(メタデータ) (2023-04-26T02:49:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。