論文の概要: Joint Optimization of Piecewise Linear Ensembles
- arxiv url: http://arxiv.org/abs/2405.00303v3
- Date: Thu, 29 Aug 2024 20:21:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-02 20:01:42.668911
- Title: Joint Optimization of Piecewise Linear Ensembles
- Title(参考訳): ピアスワイド線形アンサンブルの合同最適化
- Authors: Matt Raymond, Angela Violi, Clayton Scott,
- Abstract要約: ツリーアンサンブルは多くの予測タスクで最先端のパフォーマンスを達成する。
我々は$textbfJ$oint $textbfO$ptimization of $textbfL$inear $textbfEn$sembles (JOPLEn)を提案する。
JOPLEnは、スパーシティ・プロモーティングや部分空間ノルムを含むいくつかの一般的な罰則を非線形予測に適用することを許している。
- 参考スコア(独自算出の注目度): 11.34717731050474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tree ensembles achieve state-of-the-art performance on numerous prediction tasks. We propose $\textbf{J}$oint $\textbf{O}$ptimization of $\textbf{P}$iecewise $\textbf{L}$inear $\textbf{En}$sembles (JOPLEn), which jointly fits piecewise linear models at all leaf nodes of an existing tree ensemble. In addition to enhancing the ensemble expressiveness, JOPLEn allows several common penalties, including sparsity-promoting and subspace-norms, to be applied to nonlinear prediction. For example, JOPLEn with a nuclear norm penalty learns subspace-aligned functions. Additionally, JOPLEn (combined with a Dirty LASSO penalty) is an effective feature selection method for nonlinear prediction in multitask learning. Finally, we demonstrate the performance of JOPLEn on 153 regression and classification datasets and with a variety of penalties. JOPLEn leads to improved prediction performance relative to not only standard random forest and boosted tree ensembles, but also other methods for enhancing tree ensembles.
- Abstract(参考訳): ツリーアンサンブルは多くの予測タスクで最先端のパフォーマンスを達成する。
我々は$\textbf{J}$oint $\textbf{O}$ptimization of $\textbf{P}$iecewise $\textbf{L}$inear $\textbf{En}$sembles (JOPLEn)を提案する。
JOPLEnは、アンサンブル表現性の向上に加えて、スパーシティプロモーションやサブスペースノルムを含むいくつかの一般的な罰則を非線形予測に適用することができる。
例えば、核ノルムのペナルティを持つJOPLEnは、部分空間整列関数を学ぶ。
また、JOPLEn(Dirty LASSOのペナルティと組み合わせた)は、マルチタスク学習における非線形予測に有効な特徴選択法である。
最後に、153の回帰および分類データセットと、様々な罰則を用いてJOPLEnの性能を示す。
JOPLEnは、標準的なランダムな森林や樹木のアンサンブルの強化だけでなく、他の樹木のアンサンブルの強化方法と比較して、予測性能の向上につながる。
関連論文リスト
- Free Lunch in the Forest: Functionally-Identical Pruning of Boosted Tree Ensembles [45.962492329047215]
木アンサンブルを原モデルと「機能的に同一」な縮小版にプルークする方法を提案する。
我々は,アンサンブル上での機能的同一プルーニングの問題を形式化し,正確な最適化モデルを導入し,大規模なアンサンブルをプルーする高速かつ高効率な方法を提供する。
論文 参考訳(メタデータ) (2024-08-28T23:15:46Z) - A Unified Approach to Extract Interpretable Rules from Tree Ensembles via Integer Programming [2.1408617023874443]
木アンサンブル法は、教師付き分類と回帰タスクにおいて有効であることが知られている。
我々の研究は、訓練された木アンサンブルから最適化されたルールのリストを抽出することを目的としており、利用者に凝縮された解釈可能なモデルを提供する。
論文 参考訳(メタデータ) (2024-06-30T22:33:47Z) - Adaptive Split Balancing for Optimal Random Forest [8.916614661563893]
そこで本研究では,新しい適応型分割バランス法を用いて木を構築するランダムフォレストアルゴリズムを提案する。
本手法は,データから木構造を適応的に学習しながら,シンプルでスムーズなシナリオで最適性を実現する。
論文 参考訳(メタデータ) (2024-02-17T09:10:40Z) - Combinatorial Stochastic-Greedy Bandit [79.1700188160944]
我々は,選択した$n$のアームセットのジョイント報酬以外の余分な情報が観測されない場合に,マルチアームのバンディット問題に対する新規グリーディ・バンディット(SGB)アルゴリズムを提案する。
SGBは最適化された拡張型コミットアプローチを採用しており、ベースアームの大きなセットを持つシナリオ用に特別に設計されている。
論文 参考訳(メタデータ) (2023-12-13T11:08:25Z) - End-to-end Feature Selection Approach for Learning Skinny Trees [13.388576838688202]
木アンサンブルにおける特徴選択のための最適化に基づく新しい手法を提案する。
Skinny Treesは、ツリーアンサンブルの機能選択のためのエンドツーエンドツールキットである。
論文 参考訳(メタデータ) (2023-10-28T00:15:10Z) - Efficient Link Prediction via GNN Layers Induced by Negative Sampling [92.05291395292537]
リンク予測のためのグラフニューラルネットワーク(GNN)は、緩やかに2つの広いカテゴリに分けられる。
まず、Emphnode-wiseアーキテクチャは各ノードの個別の埋め込みをプリコンパイルし、後に単純なデコーダで結合して予測を行う。
第二に、エンフェッジワイド法は、ペアワイド関係の表現を強化するために、エッジ固有のサブグラフ埋め込みの形成に依存している。
論文 参考訳(メタデータ) (2023-10-14T07:02:54Z) - Individualized and Global Feature Attributions for Gradient Boosted
Trees in the Presence of $\ell_2$ Regularization [0.0]
本稿では,プレデコン(PreDecomp)を提案する。プレデコン(PreDecomp,PreDecomp,PreDecomp)は,正規化を$ell$で訓練した場合に,増木に対する新規な個別化特徴属性である。
また、各ツリーのアウトサンプルデータに個々の特徴属性とラベルの内積で定義される、偏りのないグローバルな特徴属性のファミリーであるTreeInnerを提案する。
論文 参考訳(メタデータ) (2022-11-08T17:56:22Z) - Provably Efficient Offline Reinforcement Learning with Trajectory-Wise
Reward [66.81579829897392]
我々はPessimistic vAlue iteRaTionとrEward Decomposition (PARTED)という新しいオフライン強化学習アルゴリズムを提案する。
PartEDは、最小2乗ベースの報酬再分配を通じて、ステップごとのプロキシ報酬に軌道を分解し、学習したプロキシ報酬に基づいて悲観的な値を実行する。
私たちの知る限りでは、PartEDは、トラジェクティブな報酬を持つ一般のMDPにおいて、証明可能な効率のよい最初のオフラインRLアルゴリズムである。
論文 参考訳(メタデータ) (2022-06-13T19:11:22Z) - Social Interpretable Tree for Pedestrian Trajectory Prediction [75.81745697967608]
本稿では,このマルチモーダル予測課題に対処するため,SIT(Social Interpretable Tree)と呼ばれる木に基づく手法を提案する。
木の根から葉までの経路は、個々の将来の軌跡を表す。
ETH-UCYとStanford Droneのデータセットによる実験結果からは,手作り木にもかかわらず,我々の手法が最先端の手法の性能に適合または超えることを示した。
論文 参考訳(メタデータ) (2022-05-26T12:18:44Z) - Provably Efficient Generative Adversarial Imitation Learning for Online
and Offline Setting with Linear Function Approximation [81.0955457177017]
GAIL(Generative Adversarial mimicion Learning)では、特定の報酬セットにおいて、専門家の政策からそのパフォーマンスを区別できないように、専門家のデモンストレーションからポリシーを学習することを目的としている。
GAILをオンラインとオフラインの両方で線形関数近似を用いて検討し、その変換関数と報酬関数は特徴写像において線形である。
論文 参考訳(メタデータ) (2021-08-19T16:16:00Z) - Span-based Semantic Parsing for Compositional Generalization [53.24255235340056]
SpanBasedSPは入力発話上のスパンツリーを予測し、部分的なプログラムが入力内のスパンをどのように構成するかを明示的に符号化する。
GeoQuery、SCAN、CLOSUREでは、SpanBasedSPはランダムスプリットの強いseq2seqベースラインと似ているが、構成一般化を必要とするスプリットのベースラインに比べて劇的に性能が向上する。
論文 参考訳(メタデータ) (2020-09-13T16:42:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。