論文の概要: Distillation Matters: Empowering Sequential Recommenders to Match the Performance of Large Language Model
- arxiv url: http://arxiv.org/abs/2405.00338v3
- Date: Tue, 20 Aug 2024 14:33:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 01:28:25.876269
- Title: Distillation Matters: Empowering Sequential Recommenders to Match the Performance of Large Language Model
- Title(参考訳): 蒸留の課題:大規模言語モデルの性能に合わせたシーケンスレコメンダの活用
- Authors: Yu Cui, Feng Liu, Pengbo Wang, Bohao Wang, Heng Tang, Yi Wan, Jun Wang, Jiawei Chen,
- Abstract要約: 大規模言語モデル(LLM)はレコメンデーションとして効果的に利用されており、優れたパフォーマンスを実現している。
しかし、LLMの高推論遅延は、実用的デプロイメントを著しく制限する。
本研究では,LLMに基づく推薦モデルから軽量シーケンシャルモデルへの知識蒸留について検討する。
- 参考スコア(独自算出の注目度): 12.6937643116018
- License:
- Abstract: Owing to their powerful semantic reasoning capabilities, Large Language Models (LLMs) have been effectively utilized as recommenders, achieving impressive performance. However, the high inference latency of LLMs significantly restricts their practical deployment. To address this issue, this work investigates knowledge distillation from cumbersome LLM-based recommendation models to lightweight conventional sequential models. It encounters three challenges: 1) the teacher's knowledge may not always be reliable; 2) the capacity gap between the teacher and student makes it difficult for the student to assimilate the teacher's knowledge; 3) divergence in semantic space poses a challenge to distill the knowledge from embeddings. To tackle these challenges, this work proposes a novel distillation strategy, DLLM2Rec, specifically tailored for knowledge distillation from LLM-based recommendation models to conventional sequential models. DLLM2Rec comprises: 1) Importance-aware ranking distillation, which filters reliable and student-friendly knowledge by weighting instances according to teacher confidence and student-teacher consistency; 2) Collaborative embedding distillation integrates knowledge from teacher embeddings with collaborative signals mined from the data. Extensive experiments demonstrate the effectiveness of the proposed DLLM2Rec, boosting three typical sequential models with an average improvement of 47.97%, even enabling them to surpass LLM-based recommenders in some cases.
- Abstract(参考訳): 強力なセマンティック推論能力のため、Large Language Models (LLM) はリコメンデータとして効果的に活用され、優れたパフォーマンスを実現している。
しかし、LLMの高推論遅延は、実用的デプロイメントを著しく制限する。
そこで本研究では,LLMに基づく推薦モデルから軽量な従来型シーケンシャルモデルへの知識蒸留について検討する。
課題は3つある。
1) 教師の知識が常に信頼できるとは限らない。
2 教師と学生の能力格差は、生徒が教師の知識を同化することを難しくする。
3)意味空間のばらつきは,埋め込みから知識を抽出する上での課題となる。
これらの課題に対処するため,本研究では, LLMに基づくレコメンデーションモデルから従来の逐次モデルへの知識蒸留に適した新しい蒸留戦略であるDLLM2Recを提案する。
DLLM2Rec:
1 教師の信頼度及び教員の整合性に応じて事例を重み付けし、信頼性及び学生に優しい知識をフィルタリングする重要度に配慮した格付け蒸留
2) 共同埋込み蒸留は, 教師の埋込みから得た知識をデータから抽出した協調信号と統合する。
拡張実験では、提案されたDLLM2Recの有効性を示し、3つの典型的なシーケンシャルモデルを47.97%改善し、LLMベースのレコメンデーターを乗り越えることができた。
関連論文リスト
- Mentor-KD: Making Small Language Models Better Multi-step Reasoners [15.159415340059388]
我々は,LLMのマルチステップ推論能力をより小さいLMに効果的に蒸留するメンター-KDを提案する。
我々は、メンタ、中間サイズのタスク固有の微調整モデルを利用して、追加のCoTアノテーションを強化します。
我々は広範囲な実験を行い、メンターKDの有効性を様々なモデルや複雑な推論タスクで確認する。
論文 参考訳(メタデータ) (2024-10-11T17:53:27Z) - Interactive DualChecker for Mitigating Hallucinations in Distilling Large Language Models [7.632217365130212]
大規模言語モデル(LLM)は、さまざまな機械学習(ML)タスクにまたがる例外的な機能を示している。
これらのモデルは、特に不完全な知識を持つ領域において幻覚を生み出すことができる。
幻覚を緩和し,教師モデルと学生モデルの両方のパフォーマンスを向上させるために設計された,革新的なフレームワークであるDualCheckerを紹介する。
論文 参考訳(メタデータ) (2024-08-22T12:04:04Z) - DELRec: Distilling Sequential Pattern to Enhance LLM-based Recommendation [3.5113201254928117]
逐次レコメンデーション(SR)タスクは、ユーザの過去のインタラクションと好みの変化を関連付けることで、レコメンデーションの精度を高める。
従来のモデルは、トレーニングデータ内のシーケンシャルなパターンをキャプチャすることだけに集中し、外部ソースからアイテムタイトルに埋め込まれたより広いコンテキストやセマンティックな情報を無視することが多い。
DelRecは、SRモデルから知識を抽出し、LLMがより効果的なシーケンシャルレコメンデーションのためにこれらの補足情報を容易に理解し利用できるようにすることを目的としている。
論文 参考訳(メタデータ) (2024-06-17T02:47:09Z) - Teaching-Assistant-in-the-Loop: Improving Knowledge Distillation from Imperfect Teacher Models in Low-Budget Scenarios [3.818273633647809]
3種類の信号型を利用した3成分フレームワークを提案する。
最初の信号は学生の自己整合性(学生の複数の出力の整合性)であり、学生の自信の代用となる。
提案した2段階フレームワークは,データセット間の信号を持たない微調整と比較して,20.79%の相対的な改善を実現している。
論文 参考訳(メタデータ) (2024-06-08T02:17:43Z) - PLaD: Preference-based Large Language Model Distillation with Pseudo-Preference Pairs [47.35598271306371]
大きな言語モデル(LLM)は、様々なタスクにおいて印象的な機能を示しているが、その膨大なパラメータサイズは、リソース制約のある設定での適用性を制限している。
知識蒸留(KD)は、大規模な教師モデルからコンパクトな学生モデルに専門知識を移すことによって、実行可能なソリューションを提供する。
PLaD は新規な嗜好に基づく LLM 蒸留フレームワークである。
論文 参考訳(メタデータ) (2024-06-05T03:08:25Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z) - Knowledge-Augmented Reasoning Distillation for Small Language Models in
Knowledge-Intensive Tasks [90.11273439036455]
大規模言語モデル(LLM)は知識集約推論タスクにおいて有望なパフォーマンスを示している。
外部知識ベースから得られた知識を付加したLPMから理性を生成するための,小型LMを微調整する新しい手法であるKARDを提案する。
我々は,KARDが知識集約型推論データセットにおいて,小さなT5モデルとGPTモデルの性能を著しく向上させることを示す。
論文 参考訳(メタデータ) (2023-05-28T13:00:00Z) - Mixture-of-Experts Meets Instruction Tuning:A Winning Combination for
Large Language Models [125.91897197446379]
MoEモデルは高密度モデルよりも命令チューニングの恩恵を受ける。
我々の最も強力なモデルであるFLAN-MOE-32Bは、4つのベンチマークタスクにおけるFLAN-PALM-62Bの性能を上回る。
論文 参考訳(メタデータ) (2023-05-24T04:22:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。