論文の概要: Trust Driven On-Demand Scheme for Client Deployment in Federated Learning
- arxiv url: http://arxiv.org/abs/2405.00395v1
- Date: Wed, 1 May 2024 08:50:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 16:07:30.708802
- Title: Trust Driven On-Demand Scheme for Client Deployment in Federated Learning
- Title(参考訳): フェデレートラーニングにおけるクライアントデプロイメントのための信頼駆動型オンデマンドスキーム
- Authors: Mario Chahoud, Azzam Mourad, Hadi Otrok, Jamal Bentahar, Mohsen Guizani,
- Abstract要約: Trusted-On-Demand-FL"は、サーバと資格のあるクライアントのプールの間の信頼関係を確立する。
シミュレーションでは,遺伝的アルゴリズムを応用した最適化モデルをデプロイし,連続的なユーザ行動データセットに頼っている。
- 参考スコア(独自算出の注目度): 39.9947471801304
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Containerization technology plays a crucial role in Federated Learning (FL) setups, expanding the pool of potential clients and ensuring the availability of specific subsets for each learning iteration. However, doubts arise about the trustworthiness of devices deployed as clients in FL scenarios, especially when container deployment processes are involved. Addressing these challenges is important, particularly in managing potentially malicious clients capable of disrupting the learning process or compromising the entire model. In our research, we are motivated to integrate a trust element into the client selection and model deployment processes within our system architecture. This is a feature lacking in the initial client selection and deployment mechanism of the On-Demand architecture. We introduce a trust mechanism, named "Trusted-On-Demand-FL", which establishes a relationship of trust between the server and the pool of eligible clients. Utilizing Docker in our deployment strategy enables us to monitor and validate participant actions effectively, ensuring strict adherence to agreed-upon protocols while strengthening defenses against unauthorized data access or tampering. Our simulations rely on a continuous user behavior dataset, deploying an optimization model powered by a genetic algorithm to efficiently select clients for participation. By assigning trust values to individual clients and dynamically adjusting these values, combined with penalizing malicious clients through decreased trust scores, our proposed framework identifies and isolates harmful clients. This approach not only reduces disruptions to regular rounds but also minimizes instances of round dismissal, Consequently enhancing both system stability and security.
- Abstract(参考訳): コンテナ化技術は、フェデレートラーニング(FL)のセットアップにおいて重要な役割を担い、潜在的なクライアントのプールを拡大し、学習イテレーション毎に特定のサブセットが確実に利用可能になる。
しかしながら、FLシナリオのクライアントとしてデプロイされるデバイスの信頼性について、特にコンテナデプロイメントプロセスが関与する場合に疑問が生じる。
これらの課題に対処することは、特に学習プロセスを破壊したり、モデル全体を複雑化する可能性のある、潜在的に悪意のあるクライアントを管理する上で重要である。
本研究は,システムアーキテクチャにおけるクライアント選択とモデル展開プロセスに信頼要素を統合することを目的としている。
これはOn-Demandアーキテクチャの初期クライアント選択とデプロイメカニズムに欠けている機能である。
本稿では,サーバとクライアントのプール間の信頼関係を確立するためのトラスト・オン・デマンド・FL(Trusted-On-Demand-FL)という信頼メカニズムを導入する。
デプロイメント戦略にDockerを活用することで、参加者のアクションを効果的に監視し、検証することが可能になります。
シミュレーションでは,遺伝的アルゴリズムをベースとした最適化モデルを構築し,クライアントの参加を効率的に選択する。
信頼度を個々のクライアントに割り当て、それらの値を動的に調整し、信頼度を下げて悪質なクライアントを罰することで、有害なクライアントを識別・隔離する。
このアプローチは、通常のラウンドへのディスラプションを減らすだけでなく、ラウンド解雇の事例を最小限に抑え、システムの安定性とセキュリティを向上する。
関連論文リスト
- TRAIL: Trust-Aware Client Scheduling for Semi-Decentralized Federated Learning [13.144501509175985]
本稿では、クライアントの状態とコントリビューションを評価するTRAILと呼ばれるTRust-Aware clIent scheduLing機構を提案する。
我々は、エッジサーバとクライアントが信頼できないクラスタ内モデルアグリゲーションとクラスタ間モデルコンセンサスを使用して、共有グローバルモデルをトレーニングする半分散FLフレームワークに焦点を当てる。
実世界のデータセットで行われた実験では、TRAILは最先端のベースラインを上回っ、テスト精度が8.7%向上し、トレーニング損失が15.3%減少した。
論文 参考訳(メタデータ) (2024-12-16T05:02:50Z) - FedCAP: Robust Federated Learning via Customized Aggregation and Personalization [13.17735010891312]
フェデレートラーニング(FL)は、様々なプライバシー保護シナリオに適用されている。
我々はデータ不均一性とビザンチン攻撃に対する堅牢なFLフレームワークであるFedCAPを提案する。
我々は,FedCAPがいくつかの非IID環境において良好に機能し,連続的な毒殺攻撃下で強い堅牢性を示すことを示す。
論文 参考訳(メタデータ) (2024-10-16T23:01:22Z) - ACCESS-FL: Agile Communication and Computation for Efficient Secure Aggregation in Stable Federated Learning Networks [26.002975401820887]
Federated Learning(FL)は、プライバシ対応アプリケーション用に設計された分散学習フレームワークである。
従来のFLは、プレーンモデルのアップデートがサーバに送信されると、機密性の高いクライアントデータを露出するリスクにアプローチする。
GoogleのSecure Aggregation(SecAgg)プロトコルは、二重マスキング技術を使用することで、この脅威に対処する。
通信・計算効率の高いセキュアアグリゲーション手法であるACCESS-FLを提案する。
論文 参考訳(メタデータ) (2024-09-03T09:03:38Z) - Enhancing Mutual Trustworthiness in Federated Learning for Data-Rich Smart Cities [29.951569327998133]
フェデレーション学習は、データリッチなスマートシティにおける、コラボレーションとプライバシ保護を約束する機械学習アプローチである。
ランダムなクライアント選択技術のような従来のアプローチは、システムの完全性にいくつかの脅威をもたらす。
本稿では,クライアントとサーバの双方の信頼ニーズを考慮して,フェデレート学習における相互信頼感に対処する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-01T08:49:22Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - Blockchain-based Optimized Client Selection and Privacy Preserved
Framework for Federated Learning [2.4201849657206496]
フェデレートラーニング(Federated Learning)は、大規模ニューラルネットワークモデルをトレーニングする分散メカニズムで、複数のクライアントが参加する。
この機能により、フェデレーション学習はデータのプライバシー問題に対するセキュアなソリューションとみなされる。
ブロックチェーンベースの最適化クライアント選択とプライバシ保護フレームワークを提案しました。
論文 参考訳(メタデータ) (2023-07-25T01:35:51Z) - Robust Quantity-Aware Aggregation for Federated Learning [72.59915691824624]
悪意のあるクライアントは、モデル更新を害し、モデルアグリゲーションにおけるモデル更新の影響を増幅するために大量の要求を行う。
FLの既存の防御メソッドは、悪意のあるモデル更新を処理する一方で、すべての量の良性を扱うか、単にすべてのクライアントの量を無視/停止するだけである。
本稿では,フェデレーション学習のためのロバストな量認識アグリゲーションアルゴリズムであるFedRAを提案し,局所的なデータ量を認識してアグリゲーションを行う。
論文 参考訳(メタデータ) (2022-05-22T15:13:23Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。