論文の概要: Enhancing Mutual Trustworthiness in Federated Learning for Data-Rich Smart Cities
- arxiv url: http://arxiv.org/abs/2405.00394v1
- Date: Wed, 1 May 2024 08:49:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 16:07:30.711688
- Title: Enhancing Mutual Trustworthiness in Federated Learning for Data-Rich Smart Cities
- Title(参考訳): データリッチスマートシティのためのフェデレーション学習における相互信頼感の促進
- Authors: Osama Wehbi, Sarhad Arisdakessian, Mohsen Guizani, Omar Abdel Wahab, Azzam Mourad, Hadi Otrok, Hoda Al khzaimi, Bassem Ouni,
- Abstract要約: フェデレーション学習は、データリッチなスマートシティにおける、コラボレーションとプライバシ保護を約束する機械学習アプローチである。
ランダムなクライアント選択技術のような従来のアプローチは、システムの完全性にいくつかの脅威をもたらす。
本稿では,クライアントとサーバの双方の信頼ニーズを考慮して,フェデレート学習における相互信頼感に対処する新しい枠組みを提案する。
- 参考スコア(独自算出の注目度): 29.951569327998133
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Federated learning is a promising collaborative and privacy-preserving machine learning approach in data-rich smart cities. Nevertheless, the inherent heterogeneity of these urban environments presents a significant challenge in selecting trustworthy clients for collaborative model training. The usage of traditional approaches, such as the random client selection technique, poses several threats to the system's integrity due to the possibility of malicious client selection. Primarily, the existing literature focuses on assessing the trustworthiness of clients, neglecting the crucial aspect of trust in federated servers. To bridge this gap, in this work, we propose a novel framework that addresses the mutual trustworthiness in federated learning by considering the trust needs of both the client and the server. Our approach entails: (1) Creating preference functions for servers and clients, allowing them to rank each other based on trust scores, (2) Establishing a reputation-based recommendation system leveraging multiple clients to assess newly connected servers, (3) Assigning credibility scores to recommending devices for better server trustworthiness measurement, (4) Developing a trust assessment mechanism for smart devices using a statistical Interquartile Range (IQR) method, (5) Designing intelligent matching algorithms considering the preferences of both parties. Based on simulation and experimental results, our approach outperforms baseline methods by increasing trust levels, global model accuracy, and reducing non-trustworthy clients in the system.
- Abstract(参考訳): フェデレーション学習は、データリッチなスマートシティにおける、コラボレーションとプライバシ保護を約束する機械学習アプローチである。
それでも、これらの都市環境の固有の異質性は、協調モデルトレーニングにおいて信頼できるクライアントを選択する上で大きな課題となる。
ランダムなクライアント選択技術のような従来のアプローチの使用は、悪意のあるクライアント選択の可能性のため、システムの完全性にいくつかの脅威をもたらす。
既存の文献は、クライアントの信頼性を評価し、フェデレートされたサーバにおける信頼の重要な側面を無視している。
このギャップを埋めるため,本研究では,クライアントとサーバの信頼関係を考慮し,連携学習における相互信頼度に対処する新しい枠組みを提案する。
提案手法では,(1) サーバとクライアントの選好関数の作成,(2) 信頼スコアに基づいて相互にランク付けを行うこと,(2) 新しく接続されたサーバを評価するために複数のクライアントを活用する評判に基づく推薦システムを確立すること,(3) 信頼度スコアをサーバの信頼性測定に推奨するデバイスに割り当てること,(4) スマートデバイスの信頼度評価機構を統計的インタークアタイルレンジ(IQR)法を用いて開発すること,(5) 双方の選好を考慮したインテリジェントマッチングアルゴリズムの設計。
シミュレーションと実験結果に基づいて,信頼度の向上,グローバルモデル精度の向上,信頼できないクライアントの削減などにより,ベースライン手法よりも優れた性能を示す。
関連論文リスト
- WPFed: Web-based Personalized Federation for Decentralized Systems [11.458835427697442]
我々はWPFedを紹介した。WPFedは、グローバルに最適な隣人選択を可能にするように設計された、完全に分散されたWebベースの学習フレームワークである。
セキュリティを強化し、悪意のある振る舞いを抑えるため、WPFedはLSHコードとパフォーマンスランキングの両方の検証メカニズムを統合している。
我々の発見は、WPFedが多種多様な相互接続されたWeb環境にまたがって効果的でセキュアな分散協調学習を促進する可能性を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-10-15T08:17:42Z) - Robust Zero Trust Architecture: Joint Blockchain based Federated learning and Anomaly Detection based Framework [17.919501880326383]
本稿では,IoTネットワーク内の効率的なリモートワークとコラボレーションを支援する分散システムに適した,堅牢なゼロトラストアーキテクチャ(ZTA)を紹介する。
ブロックチェーンベースのフェデレーション学習原則を使用することで、当社のフレームワークは、漏洩したクライアントからの悪意のある更新を防止すべく、堅牢な集約メカニズムを備えている。
このフレームワークは異常検出と信頼計算を統合し、セキュアで信頼性の高いデバイスコラボレーションを分散的に保証する。
論文 参考訳(メタデータ) (2024-06-24T23:15:19Z) - Trust Driven On-Demand Scheme for Client Deployment in Federated Learning [39.9947471801304]
Trusted-On-Demand-FL"は、サーバと資格のあるクライアントのプールの間の信頼関係を確立する。
シミュレーションでは,遺伝的アルゴリズムを応用した最適化モデルをデプロイし,連続的なユーザ行動データセットに頼っている。
論文 参考訳(メタデータ) (2024-05-01T08:50:08Z) - Robust and Actively Secure Serverless Collaborative Learning [48.01929996757643]
コラボレーティブ機械学習(ML)は、分散データからより良いモデルを学ぶために広く利用されている。
学習のための協調的なアプローチは、直感的にユーザデータを保護しますが、サーバ、クライアント、あるいはその両方に対して脆弱なままです。
本稿では、悪意のあるサーバに対してセキュアで、悪意のあるクライアントに対して堅牢なピアツーピア学習方式を提案する。
論文 参考訳(メタデータ) (2023-10-25T14:43:03Z) - Blockchain-based Optimized Client Selection and Privacy Preserved
Framework for Federated Learning [2.4201849657206496]
フェデレートラーニング(Federated Learning)は、大規模ニューラルネットワークモデルをトレーニングする分散メカニズムで、複数のクライアントが参加する。
この機能により、フェデレーション学習はデータのプライバシー問題に対するセキュアなソリューションとみなされる。
ブロックチェーンベースの最適化クライアント選択とプライバシ保護フレームワークを提案しました。
論文 参考訳(メタデータ) (2023-07-25T01:35:51Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
本研究では,ランダムに選択したクライアントからのグループデータのクラス不均衡が,性能の大幅な低下につながることを示す。
我々のキーとなる観測に基づいて、我々は効率的なクライアントサンプリング機構、すなわちフェデレートクラスバランスサンプリング(Fed-CBS)を設計する。
特に、クラス不均衡の尺度を提案し、その後、同型暗号化を用いてプライバシー保護方式でこの尺度を導出する。
論文 参考訳(メタデータ) (2022-09-30T05:42:56Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
フェデレーション学習は、プライバシと通信の制限を尊重しながら、クライアントの大規模なネットワークに分散されたサンプルからのトレーニングモデルを可能にする。
これら2つのハードルを同時に処理する理論的なスピードアップを保証する新しいアルゴリズム手法を開発した。
提案手法は,すべてのクライアントのデータを用いてグローバルな共通表現を見つけ,各クライアントに対してパーソナライズされたソリューションにつながるパラメータの集合を学習するために,表現学習理論からのアイデアに依存している。
論文 参考訳(メタデータ) (2022-06-05T01:14:46Z) - Personalized multi-faceted trust modeling to determine trust links in
social media and its potential for misinformation management [61.88858330222619]
ソーシャルメディアにおけるピア間の信頼関係を予測するためのアプローチを提案する。
本稿では,データ駆動型多面信頼モデルを提案する。
信頼を意識したアイテムレコメンデーションタスクで説明され、提案したフレームワークを大規模なYelpデータセットのコンテキストで評価する。
論文 参考訳(メタデータ) (2021-11-11T19:40:51Z) - Blockchain-based Trustworthy Federated Learning Architecture [16.062545221270337]
ブロックチェーンベースの信頼できるフェデレーション学習アーキテクチャを提案する。
まず、説明責任を実現するために、スマートコントラクトベースのデータモデル証明レジストリを設計する。
また、トレーニングデータの公平性を高めるために、重み付き公正データサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-16T06:13:58Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - An evaluation of word-level confidence estimation for end-to-end
automatic speech recognition [70.61280174637913]
エンドツーエンド自動音声認識(ASR)における信頼度推定の検討
4つのよく知られた音声データセットにおける信頼度手法の広範なベンチマークを提供する。
以上の結果から,ロジットを学習温度でスケーリングすることで,強いベースラインが得られることが示唆された。
論文 参考訳(メタデータ) (2021-01-14T09:51:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。