In Anticipation of Perfect Deepfake: Identity-anchored Artifact-agnostic Detection under Rebalanced Deepfake Detection Protocol
- URL: http://arxiv.org/abs/2405.00483v1
- Date: Wed, 1 May 2024 12:48:13 GMT
- Title: In Anticipation of Perfect Deepfake: Identity-anchored Artifact-agnostic Detection under Rebalanced Deepfake Detection Protocol
- Authors: Wei-Han Wang, Chin-Yuan Yeh, Hsi-Wen Chen, De-Nian Yang, Ming-Syan Chen,
- Abstract summary: We introduce the Rebalanced Deepfake Detection Protocol (RDDP) to stress-test detectors under balanced scenarios.
We present ID-Miner, a detector that identifies the puppeteer behind the disguise by focusing on motion over artifacts or appearances.
- Score: 20.667392938528987
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As deep generative models advance, we anticipate deepfakes achieving "perfection"-generating no discernible artifacts or noise. However, current deepfake detectors, intentionally or inadvertently, rely on such artifacts for detection, as they are exclusive to deepfakes and absent in genuine examples. To bridge this gap, we introduce the Rebalanced Deepfake Detection Protocol (RDDP) to stress-test detectors under balanced scenarios where genuine and forged examples bear similar artifacts. We offer two RDDP variants: RDDP-WHITEHAT uses white-hat deepfake algorithms to create 'self-deepfakes,' genuine portrait videos with the resemblance of the underlying identity, yet carry similar artifacts to deepfake videos; RDDP-SURROGATE employs surrogate functions (e.g., Gaussian noise) to process both genuine and forged examples, introducing equivalent noise, thereby sidestepping the need of deepfake algorithms. Towards detecting perfect deepfake videos that aligns with genuine ones, we present ID-Miner, a detector that identifies the puppeteer behind the disguise by focusing on motion over artifacts or appearances. As an identity-based detector, it authenticates videos by comparing them with reference footage. Equipped with the artifact-agnostic loss at frame-level and the identity-anchored loss at video-level, ID-Miner effectively singles out identity signals amidst distracting variations. Extensive experiments comparing ID-Miner with 12 baseline detectors under both conventional and RDDP evaluations with two deepfake datasets, along with additional qualitative studies, affirm the superiority of our method and the necessity for detectors designed to counter perfect deepfakes.
Related papers
- Deepfake detection in videos with multiple faces using geometric-fakeness features [79.16635054977068]
Deepfakes of victims or public figures can be used by fraudsters for blackmailing, extorsion and financial fraud.
In our research we propose to use geometric-fakeness features (GFF) that characterize a dynamic degree of a face presence in a video.
We employ our approach to analyze videos with multiple faces that are simultaneously present in a video.
arXiv Detail & Related papers (2024-10-10T13:10:34Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
We propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF)
Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts.
It adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination.
arXiv Detail & Related papers (2023-09-30T12:30:25Z) - On the Vulnerability of DeepFake Detectors to Attacks Generated by
Denoising Diffusion Models [0.5827521884806072]
We investigate the vulnerability of single-image deepfake detectors to black-box attacks created by the newest generation of generative methods.
Our experiments are run on FaceForensics++, a widely used deepfake benchmark consisting of manipulated images.
Our findings indicate that employing just a single denoising diffusion step in the reconstruction process of a deepfake can significantly reduce the likelihood of detection.
arXiv Detail & Related papers (2023-07-11T15:57:51Z) - Fooling State-of-the-Art Deepfake Detection with High-Quality Deepfakes [2.0883760606514934]
We show that deepfake detectors proven to generalize well on multiple research datasets still struggle in real-world scenarios with well-crafted fakes.
We propose a novel autoencoder for face swapping alongside an advanced face blending technique, which we utilize to generate 90 high-quality deepfakes.
arXiv Detail & Related papers (2023-05-09T09:08:49Z) - SeeABLE: Soft Discrepancies and Bounded Contrastive Learning for
Exposing Deepfakes [7.553507857251396]
We propose a novel deepfake detector, called SeeABLE, that formalizes the detection problem as a (one-class) out-of-distribution detection task.
SeeABLE pushes perturbed faces towards predefined prototypes using a novel regression-based bounded contrastive loss.
We show that our model convincingly outperforms competing state-of-the-art detectors, while exhibiting highly encouraging generalization capabilities.
arXiv Detail & Related papers (2022-11-21T09:38:30Z) - Voice-Face Homogeneity Tells Deepfake [56.334968246631725]
Existing detection approaches contribute to exploring the specific artifacts in deepfake videos.
We propose to perform the deepfake detection from an unexplored voice-face matching view.
Our model obtains significantly improved performance as compared to other state-of-the-art competitors.
arXiv Detail & Related papers (2022-03-04T09:08:50Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
Deep generative models have led to highly realistic media, known as deepfakes, that are commonly indistinguishable from real to human eyes.
We propose a novel fake detection that is designed to re-synthesize testing images and extract visual cues for detection.
We demonstrate the improved effectiveness, cross-GAN generalization, and robustness against perturbations of our approach in a variety of detection scenarios.
arXiv Detail & Related papers (2021-05-29T21:22:24Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
forged images generated by Deepfake techniques pose a serious threat to the trustworthiness of digital information.
In this paper, we aim to capture the subtle manipulation artifacts at different scales for Deepfake detection.
We introduce a high-quality Deepfake dataset, SR-DF, which consists of 4,000 DeepFake videos generated by state-of-the-art face swapping and facial reenactment methods.
arXiv Detail & Related papers (2021-04-20T05:43:44Z) - Identity-Driven DeepFake Detection [91.0504621868628]
Identity-Driven DeepFake Detection takes as input the suspect image/video as well as the target identity information.
We output a decision on whether the identity in the suspect image/video is the same as the target identity.
We present a simple identity-based detection algorithm called the OuterFace, which may serve as a baseline for further research.
arXiv Detail & Related papers (2020-12-07T18:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.