Explainable Automatic Grading with Neural Additive Models
- URL: http://arxiv.org/abs/2405.00489v1
- Date: Wed, 1 May 2024 12:56:14 GMT
- Title: Explainable Automatic Grading with Neural Additive Models
- Authors: Aubrey Condor, Zachary Pardos,
- Abstract summary: Current state-of-the-art ASAG models are large neural networks (NN) often described as "black box"
We experiment with a type of model called a Neural Additive Model that combines the performance of a NN with the explainability of an additive model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of automatic short answer grading (ASAG) models may help alleviate the time burden of grading while encouraging educators to frequently incorporate open-ended items in their curriculum. However, current state-of-the-art ASAG models are large neural networks (NN) often described as "black box", providing no explanation for which characteristics of an input are important for the produced output. This inexplicable nature can be frustrating to teachers and students when trying to interpret, or learn from an automatically-generated grade. To create a powerful yet intelligible ASAG model, we experiment with a type of model called a Neural Additive Model that combines the performance of a NN with the explainability of an additive model. We use a Knowledge Integration (KI) framework from the learning sciences to guide feature engineering to create inputs that reflect whether a student includes certain ideas in their response. We hypothesize that indicating the inclusion (or exclusion) of predefined ideas as features will be sufficient for the NAM to have good predictive power and interpretability, as this may guide a human scorer using a KI rubric. We compare the performance of the NAM with another explainable model, logistic regression, using the same features, and to a non-explainable neural model, DeBERTa, that does not require feature engineering.
Related papers
- SOLD: Reinforcement Learning with Slot Object-Centric Latent Dynamics [16.020835290802548]
Slot-Attention for Object-centric Latent Dynamics is a novel algorithm that learns object-centric dynamics models from pixel inputs.
We demonstrate that the structured latent space not only improves model interpretability but also provides a valuable input space for behavior models to reason over.
Our results show that SOLD outperforms DreamerV3, a state-of-the-art model-based RL algorithm, across a range of benchmark robotic environments.
arXiv Detail & Related papers (2024-10-11T14:03:31Z) - A Multimodal Automated Interpretability Agent [63.8551718480664]
MAIA is a system that uses neural models to automate neural model understanding tasks.
We first characterize MAIA's ability to describe (neuron-level) features in learned representations of images.
We then show that MAIA can aid in two additional interpretability tasks: reducing sensitivity to spurious features, and automatically identifying inputs likely to be mis-classified.
arXiv Detail & Related papers (2024-04-22T17:55:11Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - Unraveling Feature Extraction Mechanisms in Neural Networks [10.13842157577026]
We propose a theoretical approach based on Neural Tangent Kernels (NTKs) to investigate such mechanisms.
We reveal how these models leverage statistical features during gradient descent and how they are integrated into final decisions.
We find that while self-attention and CNN models may exhibit limitations in learning n-grams, multiplication-based models seem to excel in this area.
arXiv Detail & Related papers (2023-10-25T04:22:40Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Structural Neural Additive Models: Enhanced Interpretable Machine
Learning [0.0]
In recent years, the field has seen a push towards interpretable neural networks, such as the visually interpretable Neural Additive Models (NAMs)
We propose a further step into the direction of intelligibility beyond the mere visualization of feature effects and propose Structural Neural Additive Models (SNAMs)
A modeling framework that combines classical and clearly interpretable statistical methods with the predictive power of neural applications.
arXiv Detail & Related papers (2023-02-18T09:52:30Z) - Higher-order Neural Additive Models: An Interpretable Machine Learning
Model with Feature Interactions [2.127049691404299]
Black-box models, such as deep neural networks, exhibit superior predictive performances, but understanding their behavior is notoriously difficult.
Recently proposed neural additive models (NAM) have achieved state-of-the-art interpretable machine learning.
We propose a novel interpretable machine learning method called higher-order neural additive models (HONAM) and a feature interaction method for high interpretability.
arXiv Detail & Related papers (2022-09-30T12:12:30Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Leap-Of-Thought: Teaching Pre-Trained Models to Systematically Reason
Over Implicit Knowledge [96.92252296244233]
Large pre-trained language models (LMs) acquire some reasoning capacity, but this ability is difficult to control.
We show that LMs can be trained to reliably perform systematic reasoning combining both implicit, pre-trained knowledge and explicit natural language statements.
Our work paves a path towards open-domain systems that constantly improve by interacting with users who can instantly correct a model by adding simple natural language statements.
arXiv Detail & Related papers (2020-06-11T17:02:20Z) - Neural Additive Models: Interpretable Machine Learning with Neural Nets [77.66871378302774]
Deep neural networks (DNNs) are powerful black-box predictors that have achieved impressive performance on a wide variety of tasks.
We propose Neural Additive Models (NAMs) which combine some of the expressivity of DNNs with the inherent intelligibility of generalized additive models.
NAMs learn a linear combination of neural networks that each attend to a single input feature.
arXiv Detail & Related papers (2020-04-29T01:28:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.