論文の概要: CookingSense: A Culinary Knowledgebase with Multidisciplinary Assertions
- arxiv url: http://arxiv.org/abs/2405.00523v1
- Date: Wed, 1 May 2024 13:58:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 15:37:50.368191
- Title: CookingSense: A Culinary Knowledgebase with Multidisciplinary Assertions
- Title(参考訳): CookingSense: 多分野の知識ベース
- Authors: Donghee Choi, Mogan Gim, Donghyeon Park, Mujeen Sung, Hyunjae Kim, Jaewoo Kang, Jihun Choi,
- Abstract要約: CookingSenseは、さまざまなソースから抽出された料理領域における知識アサーションの記述的なコレクションである。
CookingSenseは辞書ベースのフィルタリングと言語モデルに基づくセマンティックフィルタリング技術によって構築されている。
本稿では,料理意思決定支援システム評価のための新しいベンチマークであるFoodBenchを紹介する。
- 参考スコア(独自算出の注目度): 23.21190348451355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces CookingSense, a descriptive collection of knowledge assertions in the culinary domain extracted from various sources, including web data, scientific papers, and recipes, from which knowledge covering a broad range of aspects is acquired. CookingSense is constructed through a series of dictionary-based filtering and language model-based semantic filtering techniques, which results in a rich knowledgebase of multidisciplinary food-related assertions. Additionally, we present FoodBench, a novel benchmark to evaluate culinary decision support systems. From evaluations with FoodBench, we empirically prove that CookingSense improves the performance of retrieval augmented language models. We also validate the quality and variety of assertions in CookingSense through qualitative analysis.
- Abstract(参考訳): 本稿では,Webデータや科学論文,レシピなど,さまざまなソースから抽出された料理領域における知識主張の記述的コレクションであるCookingSenseについて紹介する。
CookingSenseは、辞書ベースのフィルタリングと言語モデルに基づくセマンティックフィルタリング技術によって構築されている。
また,料理意思決定支援システム評価のための新しいベンチマークであるFoodBenchを提案する。
FoodBenchによる評価から,CookingSenseが検索言語モデルの性能を向上させることを実証的に証明した。
また,定性的分析により,CookingSenseの品質とアサーションの多様性を検証した。
関連論文リスト
- A topological analysis of the space of recipes [0.0]
本稿では、料理レシピの空間を研究するために、トポロジカルデータ分析、特に永続的ホモロジーの利用を紹介する。
特に、永続的ホモロジー分析は、既存のレシピの空間におけるマルチスケールの「穴」を取り巻く一連のレシピを提供する。
論文 参考訳(メタデータ) (2024-06-12T01:28:16Z) - FoodLMM: A Versatile Food Assistant using Large Multi-modal Model [96.76271649854542]
大規模マルチモーダルモデル(LMM)は多くの視覚言語タスクにおいて顕著な進歩を遂げている。
本稿では,多機能なLMMに基づく多目的食品アシスタントであるFoodLMMを提案する。
本稿では,食品の栄養価と複数のセグメンテーションマスクを予測するために,一連の新しいタスク固有のトークンとヘッドを導入する。
論文 参考訳(メタデータ) (2023-12-22T11:56:22Z) - FIRE: Food Image to REcipe generation [10.45344523054623]
フードコンピューティングは、食品画像のレシピ情報を自律的に生成できるエンドツーエンドのインテリジェントシステムを開発することを目的としている。
本稿では,食品コンピューティング分野におけるレシピ生成に適した新しい手法であるFIREを提案する。
本稿では、FIREと大規模言語モデルのプロンプトを統合することの恩恵を享受できる2つの実用的なアプリケーションを紹介する。
論文 参考訳(メタデータ) (2023-08-28T08:14:20Z) - Semi-Automated Construction of Food Composition Knowledge Base [0.06445605125467573]
本稿では,オンラインの科学文献から食品組成の知識基盤を構築するための半自動フレームワークを提案する。
我々の研究は、人間のループモデルが、ますます増加するビッグデータに順応するAI支援食品システムへの一歩であることを実証している。
論文 参考訳(メタデータ) (2023-01-24T22:08:49Z) - Food Ingredients Recognition through Multi-label Learning [0.0]
ダイエット自動評価システムにおいて, 食材中のさまざまな食材を識別する能力は重要な決定要因である。
我々は,料理画像中の任意の成分を検出するために,深層多ラベル学習アプローチを採用し,最先端のニューラルネットワークを評価した。
論文 参考訳(メタデータ) (2022-10-24T10:18:26Z) - Learning Structural Representations for Recipe Generation and Food
Retrieval [101.97397967958722]
本稿では,食品レシピ生成課題に取り組むために,構造認識ネットワーク(SGN)の新たな枠組みを提案する。
提案モデルは高品質でコヒーレントなレシピを作成でき、ベンチマークRecipe1Mデータセット上で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-10-04T06:36:31Z) - Towards Building a Food Knowledge Graph for Internet of Food [66.57235827087092]
食品分類から食品分類、食品知識グラフまで、食品知識組織の進化を概観する。
食品知識グラフは、食品検索と質問回答(QA)、パーソナライズされた食事レコメンデーション、食品分析、可視化において重要な役割を果たす。
食品知識グラフの今後の方向性は、マルチモーダル食品知識グラフや食品インテリジェンスなど、いくつかの分野をカバーする。
論文 参考訳(メタデータ) (2021-07-13T06:26:53Z) - Multi-modal Cooking Workflow Construction for Food Recipes [147.4435186953995]
ワークフロー構築のための最初の大規模データセットであるMM-ReSを構築した。
本稿では、視覚情報とテキスト情報の両方を利用して調理ワークフローを構築するニューラルエンコーダデコーダモデルを提案する。
論文 参考訳(メタデータ) (2020-08-20T18:31:25Z) - Decomposing Generation Networks with Structure Prediction for Recipe
Generation [142.047662926209]
本稿では,構造予測を伴うDGN(Decomposing Generation Networks)を提案する。
具体的には,調理指導を複数のフェーズに分割し,各フェーズに異なるサブジェネレータを割り当てる。
提案手法は, (i) 大域的構造予測成分を用いてレシピ構造を学習し, (ii) 予測された構造に基づいてサブジェネレータ出力成分でレシピ相を生成するという2つの新しいアイデアを含む。
論文 参考訳(メタデータ) (2020-07-27T08:47:50Z) - Classification of Cuisines from Sequentially Structured Recipes [8.696042114987966]
料理の特徴に基づく料理の分類は 際立った問題です。
我々は、RecipeDBデータセット上のこれらの情報を考慮し、様々な分類手法を実装した。
最先端のRoBERTaモデルは、様々な分類モデルの中で73.30%の精度を示した。
論文 参考訳(メタデータ) (2020-04-26T05:40:36Z) - Cross-Modal Food Retrieval: Learning a Joint Embedding of Food Images
and Recipes with Semantic Consistency and Attention Mechanism [70.85894675131624]
画像とレシピを共通の特徴空間に埋め込み、対応する画像とレシピの埋め込みが互いに近接するように学習する。
本稿では,2つのモダリティの埋め込みを正規化するためのセマンティック・一貫性とアテンション・ベース・ネットワーク(SCAN)を提案する。
食品画像や調理レシピの最先端のクロスモーダル検索戦略を,かなりの差で達成できることが示される。
論文 参考訳(メタデータ) (2020-03-09T07:41:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。