論文の概要: UWAFA-GAN: Ultra-Wide-Angle Fluorescein Angiography Transformation via Multi-scale Generation and Registration Enhancement
- arxiv url: http://arxiv.org/abs/2405.00542v1
- Date: Wed, 1 May 2024 14:27:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 15:27:48.909947
- Title: UWAFA-GAN: Ultra-Wide-Angle Fluorescein Angiography Transformation via Multi-scale Generation and Registration Enhancement
- Title(参考訳): UWAFA-GAN: マルチスケールジェネレーションとレジストレーションによる超広角フルオレセイン血管造影変換
- Authors: Ruiquan Ge, Zhaojie Fang, Pengxue Wei, Zhanghao Chen, Hongyang Jiang, Ahmed Elazab, Wangting Li, Xiang Wan, Shaochong Zhang, Changmiao Wang,
- Abstract要約: UWF-FA (UWF fluorescein angiography) は、患者の手や肘に注入して蛍光染料を投与する必要がある。
注射による潜在的な副作用を軽減するため、研究者はクロスモダリティ医療画像生成アルゴリズムの開発を提案した。
本稿では,UWF-SLOからUWF-FAを合成する条件生成対向ネットワーク(UWAFA-GAN)を提案する。
- 参考スコア(独自算出の注目度): 17.28459176559761
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fundus photography, in combination with the ultra-wide-angle fundus (UWF) techniques, becomes an indispensable diagnostic tool in clinical settings by offering a more comprehensive view of the retina. Nonetheless, UWF fluorescein angiography (UWF-FA) necessitates the administration of a fluorescent dye via injection into the patient's hand or elbow unlike UWF scanning laser ophthalmoscopy (UWF-SLO). To mitigate potential adverse effects associated with injections, researchers have proposed the development of cross-modality medical image generation algorithms capable of converting UWF-SLO images into their UWF-FA counterparts. Current image generation techniques applied to fundus photography encounter difficulties in producing high-resolution retinal images, particularly in capturing minute vascular lesions. To address these issues, we introduce a novel conditional generative adversarial network (UWAFA-GAN) to synthesize UWF-FA from UWF-SLO. This approach employs multi-scale generators and an attention transmit module to efficiently extract both global structures and local lesions. Additionally, to counteract the image blurriness issue that arises from training with misaligned data, a registration module is integrated within this framework. Our method performs non-trivially on inception scores and details generation. Clinical user studies further indicate that the UWF-FA images generated by UWAFA-GAN are clinically comparable to authentic images in terms of diagnostic reliability. Empirical evaluations on our proprietary UWF image datasets elucidate that UWAFA-GAN outperforms extant methodologies. The code is accessible at https://github.com/Tinysqua/UWAFA-GAN.
- Abstract(参考訳): 超広角眼底撮影(UWF)技術と組み合わせた眼底撮影は、網膜をより包括的に観察することで、臨床環境では欠かせない診断ツールとなる。
UWF fluorescein angiography (UWF-FA) はUWFスキャニングレーザー眼科検査(UWF-SLO)とは異なり、患者の手や肘に注入して蛍光染料を投与する必要がある。
注射による潜在的な副作用を軽減するため,UWF-SLO画像をUWF-FAに変換できるクロスモダリティ医療画像生成アルゴリズムの開発が提案されている。
現在の画像生成技術は、高解像度網膜画像、特に微小血管病変の撮影において、眼底撮影の困難さに対処している。
これらの課題に対処するために,UWF-SLOからUWF-FAを合成する条件付き生成対向ネットワーク(UWAFA-GAN)を導入する。
このアプローチでは、グローバル構造と局所病変の両方を効率的に抽出するために、マルチスケールジェネレータとアテンション送信モジュールを用いる。
さらに、不整合データのトレーニングから発生する画像ぼかし問題に対処するため、このフレームワークには登録モジュールが組み込まれている。
本手法はインセプションスコアと詳細生成を非自明に行う。
さらに,UWAFA-GANが生成するUWF-FA画像は,診断信頼性の観点から,臨床に比較して精度の高い画像であることが示唆された。
UWAFA-GANが既存の手法より優れていることを示すために、当社独自のUWF画像データセットの実証評価を行った。
コードはhttps://github.com/Tinysqua/UWAFA-GANでアクセスできる。
関連論文リスト
- MFCLIP: Multi-modal Fine-grained CLIP for Generalizable Diffusion Face Forgery Detection [64.29452783056253]
フォトリアリスティック・フェイスジェネレーション手法の急速な発展は、社会やアカデミックにおいて大きな関心を集めている。
既存のアプローチは主に画像モダリティを用いて顔の偽造パターンをキャプチャするが、きめ細かいノイズやテキストのような他のモダリティは完全には探索されていない。
そこで本研究では,画像ノイズの多点にわたる包括的かつきめ細かなフォージェリートレースをマイニングする,MFCLIP(MF-modal Fine-fine-fine-fine-fine-fine CLIP)モデルを提案する。
論文 参考訳(メタデータ) (2024-09-15T13:08:59Z) - Progressive Retinal Image Registration via Global and Local Deformable Transformations [49.032894312826244]
我々はHybridRetinaと呼ばれるハイブリッド登録フレームワークを提案する。
キーポイント検出器とGAMorphと呼ばれる変形ネットワークを用いて、大域的な変換と局所的な変形可能な変換を推定する。
FIREとFLoRI21という2つの広く使われているデータセットの実験により、提案したHybridRetinaは最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2024-09-02T08:43:50Z) - LPUWF-LDM: Enhanced Latent Diffusion Model for Precise Late-phase UWF-FA Generation on Limited Dataset [8.612128994023832]
UWF-FA(Ultra-Wide-Field Fluorescein Angiography)は、フルオレセインナトリウムを用いた眼疾患の正確な同定を可能にする。
既存の研究では、UWF-SLO(Ultra-Wide-Phase Scanning Laser Ophthalmoscopy)からUWF-FAを生成する方法が開発されている。
高品質後期UWF-FAの生成を妨げる2つの主要な課題:UWF-SLOと早期・後期UWF-FAデータセットの欠如と病変部位および潜在的な血液漏れ領域における現実的な生成の必要性
論文 参考訳(メタデータ) (2024-09-01T14:09:00Z) - UWF-RI2FA: Generating Multi-frame Ultrawide-field Fluorescein Angiography from Ultrawide-field Retinal Imaging Improves Diabetic Retinopathy Stratification [10.833651195216557]
我々は、生成人工知能(GenAI)を用いた非侵襲的UWF網膜イメージング(UWF-RI)から無色素UWF-FA画像を取得することを目指している。
異なる位相のUWF-FA画像18,321枚を対応するUWF-RI画像に登録し,GAN(Generative Adversarial Network)ベースのトレーニングモデルに入力した。
生成したUWF-FA画像の品質を定量化と人的評価により評価した。
論文 参考訳(メタデータ) (2024-08-20T08:22:29Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - UWAT-GAN: Fundus Fluorescein Angiography Synthesis via Ultra-wide-angle
Transformation Multi-scale GAN [1.165405976310311]
眼底写真は、眼底疾患の臨床的および鑑別診断に欠かせない検査である。
基礎画像の現在の方法では高解像度の画像が得られず、微小な血管病変領域を捉えることができなかった。
本稿では,UWF-SLOからUWF-FAを合成する条件付き生成対向ネットワーク(UWAT-GAN)を提案する。
論文 参考訳(メタデータ) (2023-07-21T12:23:39Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Leveraging Regular Fundus Images for Training UWF Fundus Diagnosis
Models via Adversarial Learning and Pseudo-Labeling [29.009663623719064]
オプトスカメラによる超広視野(UWF)200度の基礎イメージングが徐々に導入されている。
正規の眼底画像は、大量の高品質な注釈付きデータを含んでいる。
ドメインギャップのため、UWFファウンス画像を認識するために、通常のファウンス画像によって訓練されたモデルは、性能が良くない。
本稿では,通常のUWFファウンダスとUWFファウンダスとのギャップを埋めるために,修正サイクル生成対逆ネットワーク(CycleGAN)モデルを提案する。
論文 参考訳(メタデータ) (2020-11-27T16:25:30Z) - Attention2AngioGAN: Synthesizing Fluorescein Angiography from Retinal
Fundus Images using Generative Adversarial Networks [0.0]
フルオレセイン血管造影(Fluorescein Angiography, FA)は、Fundusの写真撮影に、励起フィルターとバリアフィルターを取り入れた指定カメラを用いる技術である。
FAはまた、静脈注射されるフルオレセイン色素を必要としており、吐き気、吐き気、さらに致命的なアナフィラキシーに悪影響を及ぼす可能性がある。
本稿では,Fundus画像からFluorescein Angiographyを合成できるアテンションベースの生成ネットワークを提案する。
論文 参考訳(メタデータ) (2020-07-17T18:58:44Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
低画質の眼底画像は臨床観察における不確実性を高め、誤診のリスクを引き起こす。
本稿では,グローバルな劣化要因を抑えるために,臨床指向の基盤拡張ネットワーク(cofe-Net)を提案する。
合成画像と実画像の両方の実験により、我々のアルゴリズムは網膜の細部を失うことなく、低品質の眼底画像を効果的に補正することを示した。
論文 参考訳(メタデータ) (2020-05-12T08:01:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。