Mixture of insighTful Experts (MoTE): The Synergy of Thought Chains and Expert Mixtures in Self-Alignment
- URL: http://arxiv.org/abs/2405.00557v3
- Date: Mon, 8 Jul 2024 16:02:18 GMT
- Title: Mixture of insighTful Experts (MoTE): The Synergy of Thought Chains and Expert Mixtures in Self-Alignment
- Authors: Zhili Liu, Yunhao Gou, Kai Chen, Lanqing Hong, Jiahui Gao, Fei Mi, Yu Zhang, Zhenguo Li, Xin Jiang, Qun Liu, James T. Kwok,
- Abstract summary: Traditional alignment strategies rely heavily on human intervention, such asSupervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF)
We propose a novel self-alignment method that utilizes a Chain of Thought (CoT) approach, termed AlignCoT.
We introduce the Mixture of insighTful Experts (MoTE) architecture, which applies mixture of experts to enhance each component of the AlignCoT process, markedly increasing alignment efficiency.
- Score: 103.05005690990271
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the capabilities of large language models (LLMs) have expanded dramatically, aligning these models with human values presents a significant challenge. Traditional alignment strategies rely heavily on human intervention, such as Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF), or on the self-alignment capacities of LLMs, which usually require a strong LLM's emergent ability to improve its original bad answer. To address these challenges, we propose a novel self-alignment method that utilizes a Chain of Thought (CoT) approach, termed AlignCoT. This method encompasses stages of Question Analysis, Answer Guidance, and Safe Answer production. It is designed to enable LLMs to generate high-quality, safe responses throughout various stages of their development. Furthermore, we introduce the Mixture of insighTful Experts (MoTE) architecture, which applies mixture of experts to enhance each component of the AlignCoT process, markedly increasing alignment efficiency. The MoTE approach not only outperforms existing methods in aligning LLMs with human values but also highlights the benefits of using self-generated data, revealing the dual benefits of improved alignment and training efficiency.
Related papers
- DynMoLE: Boosting Mixture of LoRA Experts Fine-Tuning with a Hybrid Routing Mechanism [5.988126768890861]
DynMoLE is a hybrid routing strategy that dynamically adjusts expert selection based on the Tsallis entropy of the router's probability distribution.
Our experiments on commonsense reasoning benchmarks demonstrate that DynMoLE achieves substantial performance improvements.
arXiv Detail & Related papers (2025-04-01T11:14:19Z) - Optimizing Robustness and Accuracy in Mixture of Experts: A Dual-Model Approach [14.639659415276533]
Mixture of Experts (MoE) have shown remarkable success in leveraging specialized expert networks for complex machine learning tasks.
Their susceptibility to adversarial attacks presents a critical challenge for deployment in robust applications.
This paper addresses the question of how to incorporate robustness into MoEs while maintaining high natural accuracy.
arXiv Detail & Related papers (2025-02-05T20:45:52Z) - OMoE: Diversifying Mixture of Low-Rank Adaptation by Orthogonal Finetuning [3.8813502422318127]
Building mixture-of-experts (MoE) architecture for Low-rank adaptation (LoRA) is emerging as a potential direction in parameter-efficient fine-tuning (PEFT)
We first conduct qualitative analysis to indicate that experts collapse to similar representations in vanilla MoE, limiting the capacity of modular design and computational efficiency.
Motivated by these findings, we propose Orthogonal Mixture-of-Experts (OMoE)
Our method is simple and alleviates memory bottlenecks, as it incurs minimal experts compared to vanilla MoE models.
arXiv Detail & Related papers (2025-01-17T09:27:08Z) - Progressive Multimodal Reasoning via Active Retrieval [64.74746997923967]
Multi-step multimodal reasoning tasks pose significant challenges for large language models (MLLMs)
We propose AR-MCTS, a universal framework designed to progressively improve the reasoning capabilities of MLLMs.
We show that AR-MCTS can optimize sampling diversity and accuracy, yielding reliable multimodal reasoning.
arXiv Detail & Related papers (2024-12-19T13:25:39Z) - A NotSo Simple Way to Beat Simple Bench [0.0]
This paper presents a novel framework for enhancing reasoning capabilities in large language models (LLMs)
We propose a multi-step prompting strategy coupled with global consistency checks to improve model accuracy and robustness.
Our results reveal model-specific strengths: Claude excels in maintaining logical consistency, while GPT-4o exhibits exploratory creativity but struggles with ambiguous prompts.
arXiv Detail & Related papers (2024-12-12T16:04:31Z) - Dynamic Rewarding with Prompt Optimization Enables Tuning-free Self-Alignment of Language Models [54.381650481255235]
We introduce a new tuning-free approach for self-alignment, Dynamic Rewarding with Prompt Optimization (O)
Our approach leverages a search-based optimization framework that allows LLMs to iteratively self-improve and craft the optimal alignment instructions.
Empirical evaluations on eight recent LLMs, both open and closed-sourced, demonstrate that DRPO significantly enhances alignment performance.
arXiv Detail & Related papers (2024-11-13T16:15:38Z) - Improving Domain Generalization in Self-supervised Monocular Depth Estimation via Stabilized Adversarial Training [61.35809887986553]
We propose a general adversarial training framework, named Stabilized Conflict-optimization Adversarial Training (SCAT)
SCAT integrates adversarial data augmentation into self-supervised MDE methods to achieve a balance between stability and generalization.
Experiments on five benchmarks demonstrate that SCAT can achieve state-of-the-art performance and significantly improve the generalization capability of existing self-supervised MDE methods.
arXiv Detail & Related papers (2024-11-04T15:06:57Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
We propose a novel Self-supervised Preference Optimization (SPO) framework, which constructs a self-supervised preference degree loss combined with the alignment loss.
The results demonstrate that SPO can be seamlessly integrated with existing preference optimization methods to achieve state-of-the-art performance.
arXiv Detail & Related papers (2024-09-26T12:37:26Z) - Bi-Factorial Preference Optimization: Balancing Safety-Helpfulness in Language Models [94.39278422567955]
Fine-tuning large language models (LLMs) on human preferences has proven successful in enhancing their capabilities.
However, ensuring the safety of LLMs during the fine-tuning remains a critical concern.
We propose a supervised learning framework called Bi-Factorial Preference Optimization (BFPO) to address this issue.
arXiv Detail & Related papers (2024-08-27T17:31:21Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Progressively Label Enhancement for Large Language Model Alignment [42.01694160556464]
Large Language Models (LLM) alignment aims to prevent models from producing content that misaligns with human expectations.
We propose PLE, a framework that dynamically adjusts the model's training process based on the evolving quality of the generated data.
arXiv Detail & Related papers (2024-08-05T16:21:17Z) - Joint Demonstration and Preference Learning Improves Policy Alignment with Human Feedback [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.
The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.
We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - Unchosen Experts Can Contribute Too: Unleashing MoE Models' Power by Self-Contrast [58.98411447739218]
Mixture-of-Experts (MoE) has emerged as a prominent architecture for scaling model size while maintaining computational efficiency.
We propose Self-Contrast Mixture-of-Experts (SCMoE), a training-free strategy that utilizes unchosen experts in a self-contrast manner during inference.
Our method is conceptually simple and computationally lightweight, as it incurs minimal latency compared to greedy decoding.
arXiv Detail & Related papers (2024-05-23T12:45:29Z) - CLHA: A Simple yet Effective Contrastive Learning Framework for Human Alignment [42.71324708567498]
Reinforcement learning from human feedback (RLHF) is a crucial technique in aligning large language models (LLMs) with human preferences.
We present a simple yet effective Contrastive Learning Framework for Human Alignment (CLHA) to align LLMs with human preferences directly.
arXiv Detail & Related papers (2024-03-25T11:37:15Z) - Diversifying the Mixture-of-Experts Representation for Language Models with Orthogonal Optimizer [59.43462055143123]
The Mixture of Experts (MoE) has emerged as a highly successful technique in deep learning.
In this study, we shed light on the homogeneous representation problem, wherein experts in the MoE fail to specialize and lack diversity.
We propose an alternating training strategy that encourages each expert to update in a direction to the subspace spanned by other experts.
arXiv Detail & Related papers (2023-10-15T07:20:28Z) - SALMON: Self-Alignment with Instructable Reward Models [80.83323636730341]
This paper presents a novel approach, namely SALMON, to align base language models with minimal human supervision.
We develop an AI assistant named Dromedary-2 with only 6 exemplars for in-context learning and 31 human-defined principles.
arXiv Detail & Related papers (2023-10-09T17:56:53Z) - Fine-tuning Language Models with Generative Adversarial Reward Modelling [30.424363135421917]
Reinforcement Learning with Human Feedback (RLHF) has been demonstrated to significantly enhance the performance of large language models (LLMs)
We propose another alternative approach: Reinforcement Learning with Generative Adversarial Feedback (RLGAF) to RLHF and SFT.
arXiv Detail & Related papers (2023-05-09T17:06:06Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
We study how hardening benign clients can affect the global model (and the malicious clients)
We propose a trigger reverse engineering based defense and show that our method can achieve improvement with guarantee robustness.
Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks.
arXiv Detail & Related papers (2022-10-23T22:24:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.