Diversifying the Mixture-of-Experts Representation for Language Models with Orthogonal Optimizer
- URL: http://arxiv.org/abs/2310.09762v2
- Date: Fri, 30 Aug 2024 13:39:56 GMT
- Title: Diversifying the Mixture-of-Experts Representation for Language Models with Orthogonal Optimizer
- Authors: Boan Liu, Liang Ding, Li Shen, Keqin Peng, Yu Cao, Dazhao Cheng, Dacheng Tao,
- Abstract summary: The Mixture of Experts (MoE) has emerged as a highly successful technique in deep learning.
In this study, we shed light on the homogeneous representation problem, wherein experts in the MoE fail to specialize and lack diversity.
We propose an alternating training strategy that encourages each expert to update in a direction to the subspace spanned by other experts.
- Score: 59.43462055143123
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The Mixture of Experts (MoE) has emerged as a highly successful technique in deep learning, based on the principle of divide-and-conquer to maximize model capacity without significant additional computational cost. Even in the era of large-scale language models (LLMs), MoE continues to play a crucial role, as some researchers have indicated that GPT-4 adopts the MoE structure to ensure diverse inference results. However, MoE is susceptible to performance degeneracy, particularly evident in the issues of imbalance and homogeneous representation among experts. While previous studies have extensively addressed the problem of imbalance, the challenge of homogeneous representation remains unresolved. In this study, we shed light on the homogeneous representation problem, wherein experts in the MoE fail to specialize and lack diversity, leading to frustratingly high similarities in their representations (up to 99\% in a well-performed MoE model). This problem restricts the expressive power of the MoE and, we argue, contradicts its original intention. To tackle this issue, we propose a straightforward yet highly effective solution: OMoE, an orthogonal expert optimizer. Additionally, we introduce an alternating training strategy that encourages each expert to update in a direction orthogonal to the subspace spanned by other experts. Our algorithm facilitates MoE training in two key ways: firstly, it explicitly enhances representation diversity, and secondly, it implicitly fosters interaction between experts during orthogonal weights computation. Through extensive experiments, we demonstrate that our proposed optimization algorithm significantly improves the performance of fine-tuning the MoE model on the GLUE benchmark, SuperGLUE benchmark, question-answering task, and name entity recognition tasks.
Related papers
- SimSMoE: Solving Representational Collapse via Similarity Measure [34.20340688374905]
Sparse mixture of experts (SMoE) have emerged as an effective approach for scaling large language models while keeping a constant computational cost.
We present Similarity-based Sparse Mixture of Experts (SimSMoE), a novel similarity of neural network algorithm, that guarantees a solution to the representation collapse issue.
arXiv Detail & Related papers (2024-06-22T16:10:45Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.
We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.
Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - Unchosen Experts Can Contribute Too: Unleashing MoE Models' Power by Self-Contrast [58.98411447739218]
Mixture-of-Experts (MoE) has emerged as a prominent architecture for scaling model size while maintaining computational efficiency.
We propose Self-Contrast Mixture-of-Experts (SCMoE), a training-free strategy that utilizes unchosen experts in a self-contrast manner during inference.
Our method is conceptually simple and computationally lightweight, as it incurs minimal latency compared to greedy decoding.
arXiv Detail & Related papers (2024-05-23T12:45:29Z) - Efficient Multi-Model Fusion with Adversarial Complementary Representation Learning [26.393644289860084]
Single-model systems often suffer from deficiencies in tasks such as speaker verification (SV) and image classification.
We propose an adversarial complementary representation learning (ACoRL) framework that enables newly trained models to avoid previously acquired knowledge.
arXiv Detail & Related papers (2024-04-24T07:47:55Z) - Multi-Head Mixture-of-Experts [100.60556163597946]
We propose Multi-Head Mixture-of-Experts (MH-MoE), which employs a multi-head mechanism to split each token into multiple sub-tokens.
MH-MoE is straightforward to implement and decouples from other SMoE optimization methods, making it easy to integrate with other SMoE models for enhanced performance.
arXiv Detail & Related papers (2024-04-23T13:47:09Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications.
MoE has been emerged as a promising solution with its sparse architecture for effective task decoupling.
Intuition-MoR1E achieves superior efficiency and 2.15% overall accuracy improvement across 14 public datasets.
arXiv Detail & Related papers (2024-04-13T12:14:58Z) - SEER-MoE: Sparse Expert Efficiency through Regularization for Mixture-of-Experts [49.01990048827639]
We introduce SEER-MoE, a framework for reducing both the memory footprint and compute requirements of pre-trained MoE models.
The first stage involves pruning the total number of experts using a heavy-hitters counting guidance, while the second stage employs a regularization-based fine-tuning strategy to recover accuracy loss.
Our empirical studies demonstrate the effectiveness of our method, resulting in a sparse MoEs model optimized for inference efficiency with minimal accuracy trade-offs.
arXiv Detail & Related papers (2024-04-07T22:13:43Z) - State-only Imitation with Transition Dynamics Mismatch [16.934888672659824]
Imitation Learning (IL) is a popular paradigm for training agents to achieve complicated goals by leveraging expert behavior.
We present a new state-only IL algorithm in this paper.
We show that our algorithm is particularly effective when there is a transition dynamics mismatch between the expert and imitator MDPs.
arXiv Detail & Related papers (2020-02-27T02:27:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.