A NotSo Simple Way to Beat Simple Bench
- URL: http://arxiv.org/abs/2412.12173v1
- Date: Thu, 12 Dec 2024 16:04:31 GMT
- Title: A NotSo Simple Way to Beat Simple Bench
- Authors: Soham Sane, Angus McLean,
- Abstract summary: This paper presents a novel framework for enhancing reasoning capabilities in large language models (LLMs)<n>We propose a multi-step prompting strategy coupled with global consistency checks to improve model accuracy and robustness.<n>Our results reveal model-specific strengths: Claude excels in maintaining logical consistency, while GPT-4o exhibits exploratory creativity but struggles with ambiguous prompts.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel framework for enhancing reasoning capabilities in large language models (LLMs) by leveraging iterative reasoning and feedback-driven methodologies. Building on the limitations identified in the SimpleBench benchmark, a dataset designed to evaluate logical coherence and real-world reasoning, we propose a multi-step prompting strategy coupled with global consistency checks to improve model accuracy and robustness. Through comparative analysis of state-of-the-art models, including Claude 3 Opus, Claude 3.5, GPT- 4o, and o1-preview, we demonstrate that iterative reasoning significantly enhances model performance, with improvements observed in both standard accuracy metrics (AVG@5) and a newly introduced metric, Extreme Averaging (EAG@5). Our results reveal model-specific strengths: Claude excels in maintaining logical consistency, while GPT-4o exhibits exploratory creativity but struggles with ambiguous prompts. By analyzing case studies and identifying gaps in spatial and temporal reasoning, we highlight areas for further refinement. The findings underscore the potential of structured reasoning frameworks to address inherent model limitations, irrespective of pretraining methodologies. This study lays the groundwork for integrating dynamic feedback mechanisms, adaptive restart strategies, and diverse evaluation metrics to advance LLM reasoning capabilities across complex and multi-domain problem spaces.
Related papers
- Phi-4-reasoning Technical Report [42.508165017775]
We introduce Phi-4-reasoning, a 14-billion parameter reasoning model that achieves strong performance on complex reasoning tasks.
We develop Phi-4-reasoning-plus, a variant enhanced through a short phase of outcome-based reinforcement learning.
Both models outperform significantly larger open-weight models such as DeepSeek-R1-Distill-Llama-70B model and approach the performance levels of full DeepSeek-R1 model.
arXiv Detail & Related papers (2025-04-30T05:05:09Z) - a1: Steep Test-time Scaling Law via Environment Augmented Generation [45.19240207975418]
Environment Augmented Generation (EAG) is a framework that enhances large language models' reasoning through real-time environmental feedback.
EAG enables deliberate backtracking and strategic replanning through tight integration of execution feedback and branching exploration.
A1-32B model achieves state-of-the-art performance among similar-sized models across all benchmarks.
arXiv Detail & Related papers (2025-04-20T12:55:59Z) - MCTS-RAG: Enhancing Retrieval-Augmented Generation with Monte Carlo Tree Search [27.378904180238557]
We introduce MCTS-RAG, a novel approach that enhances the reasoning capabilities of small language models on knowledge-intensive tasks.
Unlike standard RAG methods, which typically retrieve information independently from reasoning, MCTS-RAG combines structured reasoning with adaptive retrieval.
This integrated approach enhances decision-making, reduces hallucinations, and ensures improved factual accuracy and response consistency.
arXiv Detail & Related papers (2025-03-26T17:46:08Z) - Self-Evolved Preference Optimization for Enhancing Mathematical Reasoning in Small Language Models [17.673293240849787]
We introduce SPHERE, a self-evolving data generation pipeline that enhances reasoning in small language models (SLMs)
SPHERE operates in three stages: (i) Self-Generation, where the model autonomously constructs problem-solving steps; (ii) Self-Correction, enabling it to identify and rectify errors; and (iii) Diversity Induction, improving robustness through multiple valid reasoning trajectories.
We show that SPHERE-trained models achieve significant gains over their base versions and match/surpass GPT-4o on certain benchmarks.
arXiv Detail & Related papers (2025-03-04T14:43:25Z) - Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
Benchmarks are plagued by various biases, artifacts, or leakage.
Models may behave unreliably due to poorly explored failure modes.
causality offers an ideal framework to systematically address these challenges.
arXiv Detail & Related papers (2025-02-07T17:01:37Z) - On the Reasoning Capacity of AI Models and How to Quantify It [0.0]
Large Language Models (LLMs) have intensified the debate surrounding the fundamental nature of their reasoning capabilities.
While achieving high performance on benchmarks such as GPQA and MMLU, these models exhibit limitations in more complex reasoning tasks.
We propose a novel phenomenological approach that goes beyond traditional accuracy metrics to probe the underlying mechanisms of model behavior.
arXiv Detail & Related papers (2025-01-23T16:58:18Z) - Deliberate Reasoning for LLMs as Structure-aware Planning with Accurate World Model [14.480267340831542]
We propose Structure-aware Planning with Accurate World Model (SWAP) for large language models (LLMs)<n>SWAP incorporates structural information to guide the reasoning process via a world model and provides a soft verification mechanism over the steps.<n>We evaluate SWAP across diverse reasoning-intensive benchmarks including math reasoning, logical reasoning, and coding tasks.
arXiv Detail & Related papers (2024-10-04T04:23:36Z) - A Looming Replication Crisis in Evaluating Behavior in Language Models? Evidence and Solutions [15.350973327319418]
Large language models (LLMs) are increasingly integrated into a wide range of everyday applications.
This raises concerns about the replicability and generalizability of insights gained from research on LLM behavior.
We tested GPT-3.5, GPT-4o, Gemini 1.5 Pro, Claude 3 Opus, Llama 3-8B, and Llama 3-70B, on the chain-of-thought, EmotionPrompting, ExpertPrompting, Sandbagging, as well as Re-Reading prompt engineering techniques.
arXiv Detail & Related papers (2024-09-30T14:00:34Z) - Improving Retrieval Augmented Language Model with Self-Reasoning [20.715106330314605]
We propose a novel self-reasoning framework aimed at improving the reliability and traceability of RALMs.
The framework involves constructing self-reason trajectories with three processes: a relevance-aware process, an evidence-aware selective process, and a trajectory analysis process.
We have evaluated our framework across four public datasets to demonstrate the superiority of our method.
arXiv Detail & Related papers (2024-07-29T09:05:10Z) - Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
Modern language models (LMs) pose a new challenge in capability assessment.
To be confident in our metrics, we need a new discipline of model metrology.
arXiv Detail & Related papers (2024-07-22T17:52:12Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.
We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.
Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - The Buffer Mechanism for Multi-Step Information Reasoning in Language Models [52.77133661679439]
Investigating internal reasoning mechanisms of large language models can help us design better model architectures and training strategies.
In this study, we constructed a symbolic dataset to investigate the mechanisms by which Transformer models employ vertical thinking strategy.
We proposed a random matrix-based algorithm to enhance the model's reasoning ability, resulting in a 75% reduction in the training time required for the GPT-2 model.
arXiv Detail & Related papers (2024-05-24T07:41:26Z) - Self-Discover: Large Language Models Self-Compose Reasoning Structures [136.48389510481758]
We introduce SELF-DISCOVER, a framework for self-discovering task-intrinsic reasoning structures.
SELF-DISCOVER substantially improves GPT-4 and PaLM 2's performance on challenging reasoning benchmarks.
We show that the self-discovered reasoning structures are universally applicable across model families.
arXiv Detail & Related papers (2024-02-06T01:13:53Z) - MR-GSM8K: A Meta-Reasoning Benchmark for Large Language Model Evaluation [60.65820977963331]
We introduce a novel evaluation paradigm for Large Language Models (LLMs)
This paradigm shifts the emphasis from result-oriented assessments, which often neglect the reasoning process, to a more comprehensive evaluation.
By applying this paradigm in the GSM8K dataset, we have developed the MR-GSM8K benchmark.
arXiv Detail & Related papers (2023-12-28T15:49:43Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.