Discovering robust biomarkers of psychiatric disorders from resting-state functional MRI via graph neural networks: A systematic review
- URL: http://arxiv.org/abs/2405.00577v2
- Date: Sat, 01 Feb 2025 09:26:02 GMT
- Title: Discovering robust biomarkers of psychiatric disorders from resting-state functional MRI via graph neural networks: A systematic review
- Authors: Yi Hao Chan, Deepank Girish, Sukrit Gupta, Jing Xia, Chockalingam Kasi, Yinan He, Conghao Wang, Jagath C. Rajapakse,
- Abstract summary: We review how GNN and model explainability techniques have been applied to fMRI datasets for disorder prediction tasks.
We identify 65 studies using GNNs that reported potential fMRI biomarkers for psychiatric disorders.
We suggest establishing new standards that are based on objective evaluation metrics to determine the robustness of potential biomarkers.
- Score: 4.799269666410891
- License:
- Abstract: Graph neural networks (GNN) have emerged as a popular tool for modelling functional magnetic resonance imaging (fMRI) datasets. Many recent studies have reported significant improvements in disorder classification performance via more sophisticated GNN designs and highlighted salient features that could be potential biomarkers of the disorder. However, existing methods of evaluating their robustness are often limited to cross-referencing with existing literature, which is a subjective and inconsistent process. In this review, we provide an overview of how GNN and model explainability techniques (specifically, feature attributors) have been applied to fMRI datasets for disorder prediction tasks, with an emphasis on evaluating the robustness of potential biomarkers produced for psychiatric disorders. Then, 65 studies using GNNs that reported potential fMRI biomarkers for psychiatric disorders (attention-deficit hyperactivity disorder, autism spectrum disorder, major depressive disorder, schizophrenia) published before 9 October 2024 were identified from 2 online databases (Scopus, PubMed). We found that while most studies have performant models, salient features highlighted in these studies (as determined by feature attribution scores) vary greatly across studies on the same disorder. Reproducibility of biomarkers is only limited to a small subset at the level of regions and few transdiagnostic biomarkers were identified. To address these issues, we suggest establishing new standards that are based on objective evaluation metrics to determine the robustness of these potential biomarkers. We further highlight gaps in the existing literature and put together a prediction-attribution-evaluation framework that could set the foundations for future research on discovering robust biomarkers of psychiatric disorders via GNNs.
Related papers
- Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
Multimodal large language models (MLLMs) have recently transformed many domains, significantly affecting the medical field. Notably, Gemini-Vision-series (Gemini) and GPT-4-series (GPT-4) models have epitomized a paradigm shift in Artificial General Intelligence for computer vision.
This study evaluated the performance of the Gemini, GPT-4, and 4 popular large models for an exhaustive evaluation across 14 medical imaging datasets.
arXiv Detail & Related papers (2024-07-08T09:08:42Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds [49.34500499203579]
We create a variational autoencoder (VAE)-based model, DemoVAE, to decorrelate fMRI features from demographics.
We generate high-quality synthetic fMRI data based on user-supplied demographics.
arXiv Detail & Related papers (2024-05-13T17:49:20Z) - Highly Accurate Disease Diagnosis and Highly Reproducible Biomarker
Identification with PathFormer [32.26944736442376]
Graph neural networks (GNNs) have been the dominant deep learning model for analyzing graph-structured data.
The root of the challenges is the unique graph structure of biological signaling pathways.
We present a novel GNN model architecture, named PathFormer, which integrates signaling network, priori knowledge and omics data to rank biomarkers and predict disease diagnosis.
arXiv Detail & Related papers (2024-02-11T18:23:54Z) - A marker-less human motion analysis system for motion-based biomarker
discovery in knee disorders [60.99112047564336]
The NHS has been having increased difficulty seeing all low-risk patients, this includes but not limited to suspected osteoarthritis (OA) patients.
We propose a novel method of automated biomarker identification for diagnosis of knee disorders and the monitoring of treatment progression.
arXiv Detail & Related papers (2023-04-26T16:47:42Z) - Autism spectrum disorder classification based on interpersonal neural
synchrony: Can classification be improved by dyadic neural biomarkers using
unsupervised graph representation learning? [0.0]
We introduce unsupervised graph representations that explicitly map the neural mechanisms of a core aspect of ASD.
First results from functional-near infrared spectroscopy data indicate potential predictive capacities of a task-agnostic, interpretable graph representation.
arXiv Detail & Related papers (2022-08-17T07:10:57Z) - Counterfactual Image Synthesis for Discovery of Personalized Predictive
Image Markers [0.293168019422713]
We show how a deep conditional generative model can be used to perturb local imaging features in baseline images that are pertinent to subject-specific future disease evolution.
Our model produces counterfactuals with changes in imaging features that reflect established clinical markers predictive of future MRI lesional activity at the population level.
arXiv Detail & Related papers (2022-08-03T18:58:45Z) - Quantifying the Reproducibility of Graph Neural Networks using
Multigraph Brain Data [0.0]
Graph neural networks (GNNs) have witnessed an unprecedented proliferation in tackling several problems in computer vision, computer-aided diagnosis, and related fields.
While prior studies have focused on boosting the model accuracy, quantifying the most discriminative features identified by GNNs is still an intact problem that yields concerns about their reliability in clinical applications in particular.
We propose for the first time, a framework for GNN assessment via the most discriminative features (i.e., biomarkers) shared between different models. To ascertain the soundness of our framework, the assessment embraces variations of different factors such as training strategies and
arXiv Detail & Related papers (2021-09-06T05:31:02Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Pooling Regularized Graph Neural Network for fMRI Biomarker Analysis [29.489129970039873]
A promising approach to identify the salient regions is using Graph Neural Networks (GNNs)
We propose an interpretable GNN framework with a novel salient region selection mechanism to determine neurological brain biomarkers associated with disorders.
We apply the PR-GNN framework on a Biopoint Autism Spectral Disorder (ASD) fMRI dataset.
arXiv Detail & Related papers (2020-07-29T04:19:36Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.