論文の概要: Multigroup Robustness
- arxiv url: http://arxiv.org/abs/2405.00614v1
- Date: Wed, 1 May 2024 16:35:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 15:17:48.023266
- Title: Multigroup Robustness
- Title(参考訳): 多群ロバストネス
- Authors: Lunjia Hu, Charlotte Peale, Judy Hanwen Shen,
- Abstract要約: 各サブポピュレーションに対してロバスト性を保証する多群ロバストアルゴリズムについて検討し,そのサブポピュレーション内のデータ破損量でしか分解しない。
本手法は,マルチグループフェアネスとロバストネスの新たな関係を確立する。
- 参考スコア(独自算出の注目度): 5.659543670443081
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To address the shortcomings of real-world datasets, robust learning algorithms have been designed to overcome arbitrary and indiscriminate data corruption. However, practical processes of gathering data may lead to patterns of data corruption that are localized to specific partitions of the training dataset. Motivated by critical applications where the learned model is deployed to make predictions about people from a rich collection of overlapping subpopulations, we initiate the study of multigroup robust algorithms whose robustness guarantees for each subpopulation only degrade with the amount of data corruption inside that subpopulation. When the data corruption is not distributed uniformly over subpopulations, our algorithms provide more meaningful robustness guarantees than standard guarantees that are oblivious to how the data corruption and the affected subpopulations are related. Our techniques establish a new connection between multigroup fairness and robustness.
- Abstract(参考訳): 実世界のデータセットの欠点に対処するため、ロバストな学習アルゴリズムは、任意の無差別なデータの破損を克服するために設計されている。
しかし、データ収集の実践的なプロセスは、トレーニングデータセットの特定のパーティションにローカライズされたデータ破損のパターンにつながる可能性がある。
重なり合うサブポピュレーションの豊富なコレクションから人に関する予測を行うために学習モデルをデプロイする重要なアプリケーションによって動機づけられた我々は、各サブポピュレーションの堅牢性を保証するマルチグループロバストアルゴリズムの研究を開始する。
データ破損がサブポピュレーション上で均一に分散されない場合、我々のアルゴリズムは、データ破損と影響したサブポピュレーションがどのように関連しているかを疑う標準保証よりも、より有意義な堅牢性を保証する。
本手法は,マルチグループフェアネスとロバストネスの新たな関係を確立する。
関連論文リスト
- Group Distributionally Robust Dataset Distillation with Risk Minimization [17.05513836324578]
本稿では,クラスタリングとリスク尺度の最小化を組み合わせ,DDを遂行する損失を最小化するアルゴリズムを提案する。
我々は、我々のアプローチに理論的根拠を与え、その効果的な一般化と部分群間のロバスト性を示す。
論文 参考訳(メタデータ) (2024-02-07T09:03:04Z) - Mitigating Group Bias in Federated Learning for Heterogeneous Devices [1.181206257787103]
フェデレートラーニング(Federated Learning)は、分散エッジアプリケーションにおけるプライバシ保護モデルトレーニングアプローチとして登場している。
本研究は,プライバシを維持しながら,資源利用のオーバーヘッドを伴わずにグループバイアスを最小限に抑えるグループフェアFLフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-13T16:53:48Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - CADIS: Handling Cluster-skewed Non-IID Data in Federated Learning with
Clustered Aggregation and Knowledge DIStilled Regularization [3.3711670942444014]
フェデレーション学習は、エッジデバイスがデータを公開することなく、グローバルモデルを協調的にトレーニングすることを可能にする。
我々は、実際のデータセットで発見されたクラスタスキュード非IIDと呼ばれる新しいタイプの非IIDデータに取り組む。
本稿では,クラスタ間の平等を保証するアグリゲーション方式を提案する。
論文 参考訳(メタデータ) (2023-02-21T02:53:37Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
完全ラベル付きデータからの学習は、Person Re-IdentificationやText Authorship Attributionなどのマルチメディアフォレスト問題において困難である。
近年の自己教師型学習法は,基礎となるクラスに意味的差異が有る場合に,完全ラベル付きデータを扱う際に有効であることが示されている。
本研究では,異なるクラスからのサンプルが顕著に多様性を持っていない場合でも,ラベルのないデータから学習できるようにすることにより,個人再認識とテキストオーサシップの属性に対処する戦略を提案する。
論文 参考訳(メタデータ) (2022-02-07T13:08:11Z) - Towards Group Robustness in the presence of Partial Group Labels [61.33713547766866]
入力サンプルとターゲットラベルの間に 急激な相関関係がある ニューラルネットワークの予測を誤った方向に導く
本稿では,制約セットから最悪のグループ割り当てを最適化するアルゴリズムを提案する。
グループ間で総合的な集計精度を維持しつつ,少数集団のパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2022-01-10T22:04:48Z) - Robust Trimmed k-means [70.88503833248159]
本稿では,外乱点とクラスタポイントを同時に識別するRobust Trimmed k-means (RTKM)を提案する。
RTKMは他の方法と競合することを示す。
論文 参考訳(メタデータ) (2021-08-16T15:49:40Z) - Learning Deep Neural Networks under Agnostic Corrupted Supervision [37.441467641123026]
我々は,汚職のタイプを前提にせずに,強力な保証を実現する効率的なロバストアルゴリズムを提案する。
本アルゴリズムは,平均勾配に対するデータポイントの集団的影響の制御に重点を置いている。
複数のベンチマークデータセットの実験は、異なる種類の汚職下でのアルゴリズムの堅牢性を実証した。
論文 参考訳(メタデータ) (2021-02-12T19:36:04Z) - Bayesian Semi-supervised Crowdsourcing [71.20185379303479]
クラウドソーシングは、大規模なデータセットを効率的にラベル付けし、さまざまな学習タスクを実行するための強力なパラダイムとして登場した。
この研究は、半スーパービジョンの2つの体制の下で、半教師付きクラウドソース分類を扱う。
論文 参考訳(メタデータ) (2020-12-20T23:18:51Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
分散ロバストな最適化フレームワークはパラメトリックモデルのトレーニングのために検討されている。
目的は、逆操作された入力データに対して頑健なトレーニングモデルを提供することである。
提案されたアルゴリズムは、オーバーヘッドがほとんどない堅牢性を提供する。
論文 参考訳(メタデータ) (2020-07-07T18:25:25Z) - CycleCluster: Modernising Clustering Regularisation for Deep
Semi-Supervised Classification [0.0]
深層半教師付き分類のための新しいフレームワークであるCycleClusterを提案する。
我々のコア最適化は、グラフベースの擬似ラベルと共有深層ネットワークとともに、新たなクラスタリングベースの正規化によって推進されます。
論文 参考訳(メタデータ) (2020-01-15T13:34:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。